Chapter 4 contains a detailed study of Jackson queuing networks
with single server nodes. The operating characteristics studied
include.equilibrium line sizés, service obtained by cﬁstomers and
equilibrium traffic processes on the arcs.

Chapter 5 uses results in Chapter 4 to exemplify variousvsimpii-
fications that take Jackson networks into Jackson networks.. Considered
are simplifications that ¢liminate feedback arcs or remove arcs within »
a subnetwork, and some simplifications that lump a subnetwork into a
single node. The first type of simplifications makes a combined use of
DEVS-theoretic resﬁlts derived in Chapter 1 as well as the statistical-
theoretic treatment of Chapters 2 and 3. Finally, simulation complex-
ities of Jackson networks are discussed, and their behavior under
various simplifications is investigated.

Chapters 1-5 are followed by a Conclusion that summarizes the
results attained in them and suggests a number of research fopics to
be pursued.

The third part consists of Appendices A, B and C, which proVide
mainly background material.

Appendix A contains a digest of elementary System Theory .compiled
from [Z1], and which serves as an introduction to Chapter 1.

Appendix B proposes a conceptual framework for Simplifications
which is in line with Zeigler's paradigm, and into which large tracts
of this dissertation are fitted. It provides a commén-foundation for
a variety of simplification problems arising in applied areas such as

Modeling and Simulation as well as in theoretical contexts. The central

view, expounded by it, is'that morphic relations among systems constitute



a major mathematical vehicle for formalizing the intuitive simplifi-
cation notion.

Appendix C is a collection of definitions and facts from the
domain of Stochastic Processes. It provides some mathematical founda-

tions for the methods employed in Chapter 4.

0.3 Some Notational Conventions

Each chapter or appendix in this dissertation is divided into
sections. Section m of chapter or appendix n is numbered according
to the scheme n.m. Theorems, lemmas, corollaries etc. within each
section n.m are numbered according to the scheme n.m.£ and delimitéd
by the symbol [J. Lines are usually tagged by numbers although upper
case and lower case letters as well as Latin numerals are occasionally
used. References to a line tag made within the scope of a theorem,
lemma, corollary etc. are always local, unless otherwise specified.
References to a line tag, made outside the above, are always local
to the section of occurrence, unless otherwise specified;

The symbol g means equality by definition. The symbol Pr is an
abbreviation for probability, and E - for expectation.

In referencing bibliographic material we occasionally abbreviate

the word Chapter as Ch. and the word Section as Sec.



CHAPTER 1

DETERMINISTIC DISCRETE EVENT SYSTEMS

1.0 Introduction

Discrete event systems are characterized by the fact that they
evolve in continuous time but change state due to events occurring
discretely in time. Such systems respond to discrete stimuli by under-
going state "jumps'; they remain quiescent during the time intervals
separating them. Loosely speaking, their state trajectories trace
out step functions.

The importance of discrete event systems stems from the fact
that they model a variefy of real life systems such as software
systems, information processing systems, production processes; traffic
systems, service facilities - in particular queuing systems - and i
certain aspects of biological and physical phenomena (see e.g. [Z8]
and [GZ1]).

Our interest in discrete event systems is motivated by the fact
that queuing systems can be modeled as stochasfic discrete -event
systems, while particular queuing histories are modellable as deter-
ministic discrete event systems. The term stochastic systems (versus
deterministic systems) alludes to the fact that the operétion of the.
later is governed by ordinary functions, and that of the former by
random variables.

" This chapter studies the logic of deterministic discrete event
systems and certain preservation relations among them, which are
collectively called morphisms.

»

The applications to queuing systems are twofold. First, to
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describe accurately their operation (see Chapter 2), and second, to
perform simplifications on them (see Chapters 3 and 5).

The formalization of discrete event systems by the DEVS (discfete
event system specification) concept is due to B. P. Zeigler (see [Z1]
Ch. IX Sec. 9.11). This definition is used here with minor changes
as the starting point, and the treatment of morphic relations follows
in spirit that of [Z1] and especially Chapters IX and X.

The organization of this chapter is as fol;ows. Sections 1.1 -
1.2 present a hierarchy of deterministic discrete event systems and
related structures, which is based on [Z1] Ch. IX, mainly Sec. 9.11.
Sections 1.3 - 1.5 present a hierarchy of morphisms and investigate
some of their properties. Finally, Sections 1.6 - 1.7 describe opera-
tions on discrete event systems and investigate morphic relations
among triples of discrete event systems.

The reader is referred to Appendix A and to [Z1] for additional

background.

1.1 The DEVS and DEVN Concepts

A DEVS (discrete event system) specification is a special case of
an iterative specification of a system, which is itself a special case
of the class of time invariant mathematical systems (see Appendix A).
By "special case'" we mean here that the specialized case induces an
instance of the generalized case in a one-one manner.

The salient featufe of DEVSs is that they operate in continuous
time, but significant state changes occur discretely in time. These

changes (or jumps) are caused by discrete occurrence of 'events'.
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Consequently, the evolution of a DEVS can be described by a step

function.

The definition of a DEVS follows that of [Z1], (see Ch. IX

Sec. 9.11) with rather minor deviations.

Definition 1.1.1

A DEVS (discrete event system) specification is a structure

M= (X,S,Y,%,8,\) where
X is the éxternal event set
S is the sequential state set
Y is the output value set
t is the time advance funetion
§ is the sequential state transition function
A is the output function
subject to the following restrictions:

a) ¢ is a function &:S—=[0,=].

t(s) is the maximal time the system is allowed to stay in

sequential state s. This maximum is attained whenever no

external events occur while the system is in sequential

state s.
b) & is a function §:Qx(X U{4¢})—=S where

¢ £X is the external nonevent symbol and

A
Q= {(s,e): s€S and 0 < e < €(s)} is the full state set of M.

A full state q is a pair (s,e) interpreted as a sequential

state s, and the time elapsed e in that state.
nent will be referred to as the eclock.

The definition of § has two parts.

The e compo-

<z
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b.1) VqeQ,vxeX, 6(q,x) & 8, ((5,€),%)
where GM((s,e),x) gives the sequential state to which
the system transits from the full state q, under the
external event x.

b.2) vaeQ, 8(a,8) £8,(s)
where 6¢ is the autonomous transition function of the
system. Such transitions occur whenever the clock
exceeds t(s).

¢) A is a function A:Q-+Y.

A(q) is the instantaneous output of the system from full

state q = (s,e).

Definition 1.1.2

A DEVS M = (X,5,Y,%,8,%) is a sub-DEVS of a DEVS M = (X,S,Y,t,5,)\)

if
a) Xcx
b) Scs
c) t=%|S
d) §=6]0x(XU{6}) where O = {(s,e)€Q: s €S}
&) X=1|Q

where a vertical bar designates restriction of a function domain. a
Some heuristic remarks concerning the intuitive operating conven-
tions of DEVSs are warranted at this point.
The transition function 6 describes a discrete transition struc-
ture which is essentially that of a sequential machine, while the time

advance function t describes the continuous time component superimposed
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.on it. Consequently the state of a DEVS has a discrete as well as

a continuous flavor; its sequential state component changes discretely
in time, while the clock component changes continuously in time. A
change of the sequential state will be referred to as a jump of the
system. A DEVS remains in a fixed sequential state s between jumps,.
whereas the clock e increases from 0 to t(s), thus timing the elapsed
time since the last jump to s. Sequential state transitions (jumps)
take place from a full state q = (s,e) as a result of either of the
following events.,
I) An "internal' event occurred due ‘to the fact that the
clock value e has reached the value &(s).
If no external event has occurred at that very instant, the
system will undergo an instantaneous transition to full state
(6¢(s),0). That is, a jump will take place according to 6¢
and the clock is reset to zero.
I1) An external event xe€ X has occurred but no internal event is
| scheduled to take place at the same instant.
The system will undergo an instantaneous transition to full
state (GM((s,e),x),O). That is, a jump will take place
according to 6M and the clock is reset to zero.
ITII) An internal event and an external event are scheduled to occur
at the same instamt.Jr
In this case the user should devise a tie-breaking fule that

specifies the jump to be taken by the system, due to the two

TUnlike [Z1] Ch. IX Sec. 9.13 we do not assume that internal
events have priority over external ones.

o=

s

-
S
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imminent events above. For example, one can have a §

¢

jump preempt a 6M jump or vice versa. One can also have any

combination of §, and GM jumps ranging from simple composi-

¢

tion of &, and GM to any arbitrary function of §

¢ ¢

For our purposes, it is convenient to choose a composition rule

and GM.

for a tie-breaking rule. This is the most natural rule for a wide
variety of applications, and queuing theoretic ones in particular. It
also enjoys the advantage of being robust with respect to the morphism
concept to be defined later. This fact will allow us to disregard

the special case of double scheduling in the impending study of morphic
relations among deterministic DEVSs.

Simultaneous events and tie-breaking rules are vital in simulation
of stochastic systems, especially when the time base has a minimal reso-
lution. In theoretical applications simultaneous events typically occur
with zero probability.

The mode of operation of DEVSs requires that all jumps are instan-
taneous and always reset the clock to zero, whereby the timing process
starts all\over again till the next jump. The mathematical operating
~ conventions are embedded in the discrete event structures induced by a
DEVS, to be discussed in the next section. Typically, the duration %(s)
that the system is allowed to stay in sequential state s€S, will appear

as a component of s.

Definition 1.1.3

A DEVS M = (X,S,Y,%,8,)) is said to be in explicit form if S is a

structured set and every s €S has the form s = (§,r) such that £(s) = r.

’ t
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Explicit form DEVSs are handy to work with, as the residual time to

the next autonomous transition from full state q = ((&,r),e) is r - e..

We now introduce the concept of state-DEVS and its behavioral

frames in the spirit of Appendix A.

Definition 1.1.4

A state-DEVS M = (X,S,+,¢,8,*) is a DEVS with unspecified output

value set Y and output function A. : 0

Definition 1.1.5

A behavioral frame of a state-DEVS M = (X,S,+,t,8,*) is a struc-
ture ¢ = {Y,)) where the symbols in the angular brackets have the same

meaning and constraints as in Definition 1.1.1. .

We will regard a state-DEVS as a representative of the class of

all DEVSs with the same underlying state structure. As a matter of

fact we refer to it interchangeably as DEVS or state-DEVS whenever the
context is clear.

Sequential states are classified as follows.

Definition 1.1.6

Let M = (X,S,Y,¢,8,\) be a DEVS. Let s €S be any sequential state.
Then

a) s is called transitory if %(s) =0

b) s is calied passive if €(s) = =

c) s is called regular if 0 < £(s) s =

L

=

[
e
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A transitory state is an intermediate state which the system
enters, and frém which it departs instantly. Such states are extremely
important in describing DEVS transitions under composition type tie-
breaking rules that are incurred by simultaneous events. A passive

state, on the other hand, can change only due to an external event.

Example 1.1.1

To illustrate how the DEVS concept may be used to describe real
life descrete event systems, we now model a particular queuing history
of a FIFO (first in first out) queue, with one server, where the

behavioral frame is the stream of departing customers.

Let C = {ci};.j=1 be a set of customer tags where c; tags the i-th
customer served. Let {sn}:_1 be the sequence of service times obtained

by the customers, from the server. The modeling DEVS M = (X,S,Y,%,8,))
is defined in explicit form as follows.

a) X = {1C : cie C} where 1C codes the arrival of customer c;-
i i '

b) S HAm;ﬂ:neN}U{WJuﬂ:yeC+,neN,051r<sn}

where A is the empty string, c* is the set of all finite

nonempty strings over C, and N is the set of natural numbers.

c) Y= {0,1C : cie:C} where 1c codes the departure of customer
i i

s and 0 codes a nondeparture.

d) t:S-—~(0,~] is defined by &(y,n,r) = T

e) 8:Qx(XU{¢H)—=S is defined by
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: (ci,ﬁ,sn), ify= A
e.l) GM(((YJn:r),e),lc.) = ‘ '
. (c;v,m,r-e), if y ec’

1

(A,n+l,o), if len(y)

e.2) 8,(y,n,r) = .
(p,n+1,sn+1), if vy = pcj and len(y) > 1

where len(y) is the length of the string v.

f) Xx:Q—Y is defined by

1 , ife=0,n>1, r=o or r=35

n-1 n

A((y,n,r),e) =

0, otherwise

To describe a queuing history, one chooses an "initial state"

= (y,n,r) where

(A’l,w): if y = A

(clcl_l...cl,l,sl), if vy # A

Note that external events model arrivals and internal events model
service completions.

In any sequential state s = (y,n,r), v is the line configuration,
n is the index of the customer in servicé or to be served, and r is the
residual service time. In particular s = (A,n,») is a passive state
since an empty queue can have a jump only due to an arrival of a
customer.

For double scheduling (simultaneous arrival and service completion)
the tie-breaking rule is GMOG

¢ O

Other examples may be found in [Z1] Ch. IX Sec. 9.12.
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Next, we introduce a formalism for describing discrete event

networks composed of DEVS components.

Definition 1.1.7

A DEVN (discrete event network) specification is a structure

e
el

D is a set of component indices called the index set.

M} is a set of state-DEVSs called the component set.

a0 €D

{Ia}acan is a family of subsets of D that specify the components

influenced by each component of the network. Ia is called the

influence set of a.
{z .} is a family of maps that determine the effect of a
a,B a€D
€
BeI
component on those components it influences in the network.
Z,, 8 is called the effect function of a on B.
3

{Ja} is a family of functions that specify the jump taken by

a€D

a component due to scheduling of an event or simultaneous events.

J, 1is called the jump function of o.

The above are subject to the following restrictions:
a) each state-DEVS M_ = (xa,su,-,ta,aa,-), a €D, is in explicit
form.

is a partialT map Za :5 —=X

b) for any a€D and Belu, Z ,8°5q g’

o,B

1-a partial map is allowed to be undefined on a subset of its
domain.
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c) for any a€D, J, is a function Ja:QaXZxa-*>Sa where

XOL = Xau {¢a} and ¢a,€ Xa codes an internal event in M.

Furthermoret Ja is constrained by
4 . _
Ga,¢(£a,ra), if E = {¢a}

8o M(((EyoTy) )% ), iE By = {x ),

Ja(((ga’ra)’e) ’EU.) = < xueXu

(ga,ra-e), if Ea = ¢

k(&&,r;), otherwise

To describe the operation of a DEVN N, we associate with it a

state-DEVS My = (xN,sN,-,tN,aN,-> defined by

<
u
X
P
-
-
et

tN:SN—ﬂ>(O,w] is defined by tN({(ga,ra)}uEiD) = a%gg{ra}

GN:QNXXN—*’SN is determined by the following procedure.
Take any ((s,e),X) = (({(E,,r )} cpse)s {x.} ¢ p) & Qy
Define a family of event sets {E_} as follows:

: 0 0€D
If an external event §<€XN is scheduled,then for any a €D

{xa} , if x| # 9,

® , otherwise

+We point out that unlike [Z1] Ch. IX Sec. 9.17, the tie-breaking
rule does not select a component to be activated but is embedded in

U ep
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If an internal event ¢a is scheduled in at least one component
before the occurrence of an external event, from sequential state
s eSN, then let IMM(s) & {0 €D: r, s tN(s)} be the set of imminent
components (i.e. those scheduled to undergo an autonomous jump
simultaneously).
Next, for any a€D

2. whenever o€ IMM(s), put ¢d in E

and

3. whenever oz,GIB for some B € IMM(s), put ZB,a(sB)exa in Ea.

4, Finally, compute Ja(((gu,ra),e),Ea) for each a €D.
The transition function GN is then defined in terms of the

jump functions {Ja}aeD by

8 (LT )Y @5 1R ep) = W (((6,,r),0),E )Y, ¢ p

Notice that the symbol ¢a is interpreted in N as a nonevent, while

in Ea it stands for an internal event in component a.

DPefinition 1.1.8

Let N be a DEVN and let MN be the state-DEVS associated with it.
A pair ¢ = (Y,A) is called a behavioral frame of N if it is a

behavioral frame of MN. ' O

Intuitively, a DEVN is composed of a set of DEVSs operating
concurrently and interactively. The influence functions describe the
topology of the network in terms of influence relations. The residual
time to next jump is the infimum of the residual times of all éompo-

.nents. A jump occurs whenever one or more components are activated



21

by events in Ea' These may be external to components or internal to
them. The external ones are due either to environment stimuli or to
events generated by influencers of components.‘ The internal events,
symbolized in Eu by ¢a’ trigger autonomous transitions prompted by a
clock reading of e = ta(ga,ra) in Ma' The jump function Ja takes all
these events into account when determining the jump from state
((ga,ra),e), by means of some tie-breaking rule. In most céses,
including queuing situations, Ja reduces to a composition rule

that applies 6a,M and 6a,¢ sequentially in §ome order, accbrding to
the events 'in Ea' In this case Ea must be finite, in order that Ja
be well-defined. This always happens in a DEVN with a finite index
set D. In statistical-theoretic contexts multiple scheduling

(i.e. IEal > 1)+ occurs in most cases with probability zero anyway.

Example 1.1.2

To illustrate the use of a DEVN model consider a network of
finitely many.queues in tandem where each single queué ié as in Example
1.1.1 (refer to Figure 1.1.1). The DEVN model is
{1} {z )}

a'o€b’ o,B €D’
ReT
a

{J

N = (D,{M} oJoen?

o€D’

where
a) D= {1,2,...m}

b) Ma = <xa,sa,-,ta,6a,->, is the DEVS modeling the a-th queue.

+|-| is the cardinality symbol.
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Figure 1.1.1: A Sequence of Queues in Tandem.
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- It is defined as in Example 1.1.1 except that

Xu = {lca i: ca,ie Ca}, where Ca = (ca,i}i=1 ;s the set
R .

- 3 . w
of customers whose first service occurred in Ma, and {s n}n 1
o,n n=

is the sequence of services awarded at-M .

{fa+1}, ifl <a <m

¢, if a = m

3

1 . i, if ga = (y,n,r) where y = pce’i
d) Za,B(Ea,ra) .=

undefined, otherwise
e) For each a €D, the event sets Ea have the form:

E, = {¢a} or E = {1c .} or E = {¢ ,1 '}, B<a.
. B,1 8,1

For any 1 <o <m
: -

aa’¢(ga,ra), if Ea = {¢a}

Ga,M(((Ea’ra)’e)’ch i), 1f Ea_= {ICB i

J (((E_,r ),e),E) ={ ’

¢ o @ \ (E ,v -e), if E =0
o, a s

(B, g8 T o0 1 ), A E -

. . a° C

Notice that in our DEVN, internal events (denoted ¢d) represent
service completions‘and subsequent departures. External events

(denoted 1c ) represent customer arrivals. For o = 1 these are
a,i

arrivals from an external source only, while for 1 < o« < m the arrivals
originate from an external source or from component a - 1. The tie-
breaking rule for multiply scheduled events in a component, is a compo-

sition whereby departures precede arrivals.

O
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1.2 Discrete Event Structures Induced by a DEVS

In order to gain a precise understanding of the operating conven-
tions of DEVSs and their behavior under complex input segments, we need
to translate the DEVS structure into the iterative specification and
the mathematical system induced by it. We follow'the procedure in
[Z1] Ch. IX Sec. 9.13, with minor changes.

In the following definitions N denotes the set of natural numbers.

Definition 1.2.1

The extended autonomous transition function of a DEVS

M= (X,S,Y,%,5,\) is a function EE:SX(NlJ{O})~4>S defined recursively

by

3;(5,0) 4

— A —
6¢(S:n + 1) = 6¢(6¢(s,n)) [j

Eg(s,n) gives the sequential state reached autonomously from s

after n jumps under a sufficiently long nonevent segment.

Definition 1.2.2

The total time advance function of a DEVS M = (X,S,Y,t,8,)) is the:

function o¢:Sx(NU {0})—=[0,»] defined by
0, ifn=0
o(s,n) £ n-1

Ze(3¢(s,i)) , ifn>0
i=0



o(s,n) gives the total time it takes the system to evolve
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autonomously from state (s,0) to state (Eg(s,n),O)'i.e. the total

time spanning n jumps from state (s,0).

Definition 1.2.3

The.juMp counter funetion of a DEVS M = (X,S,Y,%,8,)A) is a func-

tion m:Qx[0,*]—=NU{0}U{=} defined by

m((s,e),T) 4 sup{n: o(s,n) < e + 1}

m((s,e),1) gives the number of jumps taken by the system when

evolving autonomously from state (s,e) for T time units.

We are now ready to define the iterative specification induced

by a DEVS.

form w:(0,71]—XU{¢} such that either

a)

or

b)

¢ , if 0 <t <

]
ne>

w = Xx_ where x_(t)
T T

x, if t=1

e

w = ¢r where ¢T(t) ¢ , t €(0,1].

Definition 1.2.4

T

The Ziterative specification induced by a DEVS M =

is GM) = <T,XG,QG,Q,Y,6G,A> where

a)
b)

c)

d)

A
T = [0,«)
A
XG = XU{¢}
A .
Q.= 0Q,UQ, where Q, = {xT: T >0} and @

G X ¢ X

Q 2 {(s,é): s€S, 0 <e < t(s)}

¢

The input segment generators will be functions w of the

O

(X,S,Y,€,8,\)

(4,

1t > 0}

o

-

o
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e) GG:QXQG-ﬂ»Q is defined recursively by

V(s,e)€Q, vx€X and VT > 0

(s,e+ 1), if e + 1 < €(s)

ne>

e.1) 85((s,e),0.) = { (§,(s,m((s,€),7)), if e+ 1 = ¢(s)

§G((6¢(S)’O)’¢Q+T—€(S))’ if e + T > &(s)

nes

e.2) 8,((s,8),x) & (8,(8,((5,€),6),%),0)

An iterative specification G(M) thus derived is called a discrete

event iterative specification (abbreviated DEIS). | O

Comment 1.2.1

The symbol ¢0 denotes the empty function and is not a generator.
However, for notational convenience we shall occasionally use in this

. LA
chapter the notation GG((s,e),¢0) = (s,e). 1

Since §. in Definition 1.2.4 has a recursive definition, we

G
need to determine the conditions that render it a well-defined func-
tion. Clearly, this happens iff the DEIS G(M) has a finite number of
jumps when started from any state (s,e) under any input segment.

Now, recall that a jump occurs either under an external event

x € X according to GM’ or autonomously according to § Since input

.

segments are composed of generators, they give rise to at most one

jump according to GM' It remains to ensure that jumps according to §

¢

are also finitely many.

Formally we have



27

Definition 1.2.5

A DEVS M = (X,S,Y,%t,8,)) is called legitimate if

Vq€Q, VT 2 0, m(q,T) < . O

Theorem 1.2.1

A DEIS G(M) is well defined iff the inducing DEVS M is legitimate.

Proof

See [Z1] Ch. IX Sec. 9.11. ~ 0

For a legitimate DEVS M, the autonomous part of the transition

function of G(M) may be specified explicitly as follows.

Lemma 1.2.1

If G(M) = (T,xG,QG,Q,Y,sG,x) is a DEIS induced by a legitimate
DEVS M = (X,S,Y,¢,8,\), then

V(s,e)eQ, vt > 0 ,

85((5,6),6) = (8, (s,m((5,€),10), & + 7 - o(s,m((s,e),1)) .

Proof

See [Z1] Ch. IX Sec. 9.13. v ‘ . O

Legitimacy of DEVSs is equivalently formulated as follows.

Lemma 1.2.2

A DEVS M = (X,S,Y,%,8,)) is legitimate iff Vs€S, o(s,n) —+o

n-—to

o
wE
)
—
e
o

6
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Proof

See [z1] Ch. IX Sec. 9.13. .

A special case of illegitimacy may be caused by the class of
transitory sequential states (recall that s €S is transitory if
t(s) = 0). A DEVS can never remain in a transitory state for a time

interval of positive length, as the §, function is invoked immediately

¢
on entering such states. We see that a legitimate DEVS M cannot have

a sequential state s such that gg(s,n) is a transitory sequential state
for every n 2 0.

Notice also, that transitory full'states never appear in G(M) as
the outcoﬁe of an application of its transition function, so that they
can practically be eliminated from the state set of G(M).

In order to complete our hierarchy of discrete event systems, it

only remains to introduce the mathematical system induced by a legiti-

mate DEVS.

Definition 1.2.6

The mathematical system induced by a legitimate DEVS
. . . . -+ -
M= (X,SfY,t,é,A) is the time invariant system SG(M)= <T,XG,QG,Q,Y,6G,A>
induced by the DEIS G(M) = <T,XG,QG,Q,Y,6G,A> according to Theorem
A.2.1 in Appendix A. A mathematical system thus derived is called a
discrete event mathematical system (abbreviated DEMS). ' 0

Our main interest in a DEMS S lies in the state and output

G (M)

trajectories that it engenders (see Definition A.1.5 in Appendix A).

These concepts reflect on the mathematical operating conventions of -

- ’- ‘



N TN - s

29

discrete event systems.
Figure 1.2.1 depicts these conventions pictorially. It super-
imposes on the same time scale an input segment and the resulting state

and output trajectories, in a DEMS S The full state trajectory

GM)*
is broken down into two component trajectories - the sequential state
trajectory and the clock trajectory. The iﬁput segment is a pulse;liké
function whose spikes represent external events while the sets of
constancyvseparating them'correspond to nonevent periods. By definition
there are only finitely many spikes in each finite time interval.

The definition of §, in S, o

tory is right-continuous due to Definition 1.2.1. In terms of metric

implies that the full state trajec-

spaces, the full state space metric is derived from those of its
components, say the zero-one metricT on the sequential state space and
the natural metric on the elapsed time space.

This means that at jump instants the full state of the systemA
consists of the new sequential state and a zero clock reading. The
sequential state trajectory is a right-continuous step function, while
the elapsed time trajectory is a right-continuous jig;saw function
ascending linearly at 45°, The output trajectory records some observ-
able aspect of System behavior.

Notice that transitory states never appear in gtate trajectoriés_
at the DEMS level, because they have already been removed at the DEIS

level. -

TThe zero-one metric d on a set X is defined by

0, ifx=y
Vx,y€eX , d(x,y) =
1, ifx#y

=

bt

e
e
L)
L 2]
o
L
ey
P

L
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input x A ,
0

sequential

state s A
SOEER——
0

clock e /P

0

output y T

-%» time t

Figure 1.2.1: A Typical Input Segment and the Resulting
State and Output Trajectories in a DEMS.
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Although transitory states provide a means of describing

composition type tie-breaking rules, it is often desirable to deal with

DEVSs without such states.

Definition 1.2.7

A DEVS M = (X,S,Y,%,8,)) is called regular if M is legitimate and

every s €S is a regular sequential state. B

It is easy to see that each legitimate DEVS gives rise to a
regular one with the same induced DEIS and DEMS.
Henceforth, we shall deal only with regular discrete event systems

i.e. with those paradigms M=G(M)F+=S in which M is a regular DEVS.

G(M)
In the forthcoming treatment, we shall usually refer to DEVSs as
specifying a discrete event system. However, all related concepts in
terms of the induced DEISs and DEMSs, and especially the functions 6G
and 56, will be used freely in the discussion, as if belonging to a DEVS

rather than to its induced DEIS or DEMS. The tie-breaking rule adopted

from now on for doubly scheduled events is 6M06¢ .

L

=
o=

[ g]
Fat™
Yo
"
e
re

[
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1.3 Input Matching DEIS Morphisms

In this section we define and investigate a class of DEIS
morphisms - the so-called input matching DEIS morphisms. Working our
way up from the DEIS level to the DEVS level, our eventual goal will
be to derive a DEVS morphism (in the next section), by adding a level
of detail to the DEIS morphism concept via input matching DEIS mor-
phisms.

Throughout this chapter, the following notation will be adopted.
Unless otherwise specified, a reference to M means a DEVS
M= (X,S,Y,t,5,\) and a reference to G(M) means the DEIS

cM) = (T,X QG,Q,Y,GG,x) induced by M. A reference to M” and G(M")

G’
refers to a DEVS M* = {(X*,$°,Y",£”,67,A”) and the DEIS
G(M*) = (T,Xé,né,Q’,Y',aé,A:>induced by it respectively, and
similarly for M" and G(M"), M* and G(M*), f and G(ﬁ).

Whenever f is a morphism from structure S to structure S”, then

S and S” are referred to as the morphic preimage and the morphic image

respectively, under f,

Definition 1.3.1

Let (g,h,k) be a specification morphism (see Definition A.2.3
in Appendix A) from G(M) to G(M~).
Then (g,h,k) is called an imput matching DEIS morphism (abbreviated

IM-DEIS morphism), if there is a function ge:Xéeﬂ>XG such that

a) VxZeal , g(x2) = g (x7)_

i

¢

b) Ve eq, , g(6) = ¢,



33

In this case we say that g matches inputs via g, and that w” and g(w”)

are matching inputs. -

Thus in a IM-DEIS morphism (g,h,k) from G(M) to G(M”), the function

g preserves generators and length of generators.

Lemma 1.3.1

In a IM-DEIS morphism (g,h,k) from G(M) to G(M7), the function h
satisfies
a) VqeQ, Vx"€X”, VT > 0

a.1) h(8,(a,6,.)) = 85(h(@),0,)

a.2) h(8.(qa,g,(x7) ) = 85(h(a),x7)

Proof
Follows immediately from Definitions A.2.3 and 1.3.1. 0
Next expand G(M) and G(M”) into their respective DEMSs SG(M) and
SG(M’)‘

Definition 1.3.2

If (g,h,k) is a IM-DEIS morphism form G(M) to G(M”), then (g,h,k)

is a IM-DEMS morphism from SG(M) to SG(M’) provided g satisfies
é(wi@w£©...@wﬁ) = g(wi)Gg(wé)Q...@g(wﬁ) =

ge(xl)T£3ge(x2)12©---@ge(xn)Tn »o if e = (x7)

n

ge(xl)r-@ge(xz)T @...G¢T , if wﬁ = ¢T
1 2 n n

oz

=

P

<20

€4
-
L
enem

rr

B 1
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ot

for any w” € QG

i 1. iti TEwl Q] 0...0w .
with m.1.s decomposition w w] © v w? 0O

Thus, in IM-DEIS morphisms (g,h,k), the input segment is a

pulse train and g merely relables the pulses via B

Definition 1.3.3

An input matching DEIS state-morphism (abbreviated IM-DEIS state-
morphiem) from a DEIS G(M) to a DEIS G(M”) is a pair (g,h) subject to

the same restrictions as in Definition 1.3.1. |

The impending discussion of various morphisms will always extend
to state-morphisms, as the definition of the latter is properly
contained in that of the former. Consequently, we state now once and
for all, that all definitions and theorems concerning various morphisms
will henceforth extend to their respective state-morphisms.

We now proceed to pﬁt an algebra-like structure on tﬁe class of
IM-DEIS morphisms. The operations considered are composition and

inversion.

Theorem 1.3.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”") and let
(g”,h",k”) be a IM-DEIS morphism from G(M”") to G(M").

Then there is a IM-DEIS morphism (g”,h”,k") from G(M) to G(M").

Proof
Define (g’,h",k") & (gog”,h“oh,k“0k) where the circle operation

denotes function composition. Then
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a) g”;Qg-4>QG matches inputs via

g":X"—=X, where gg = geogé .

b) h":h"1(Q")—=Q" is onto Q", since h|h™1(Q") is onto Q~ and
h”:Q"—= Q" is onto Q”. Clearly h 1 (Q*)cQcQq.

¢) k":Y—=Y" is onto, since k:Y—eY” is onto Y” and k“:Y —=Y"
is onto Y".

d) V(s,e)eh 1(Q"), Vx"eX", Vt > 0 (see Lemma 1.3.1)

d.1) h"(84((5,8),0.)) = h*(h(8(s,€),0)))

n

h‘(Gé(h(s,e),¢T)) = Gg(h’(h(s,e)),¢T) GE(h"(S,e),¢%)
d.2) h"(éG((s,e),gg(x")T)) = h’(h(GG((S,e),ge(gé(X"))T))) =
h‘(Gé(h(s,e),gé(x")T)) = GE(h'(h(S,e)),X"T) =
GE(h"(s,e),x"T) .
e) V(s,e)eh 1(@Q")
k"(r(s,e)) = k7 (k(r(s,e))) =
k?(A”(h(s,e))) = A"(h"(h(s,e))) = A"(h"(s,€)) .

Theorem 1.3.1 asserts that the IM-DEIS morphism relation is

transitive in the sense that the IM-DEIS relation is preserved under

composition.

Theorem 1.3.2

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) such that

‘the maps g, h and k are all bijective and Q = Q.

Then there is a IM-DEIS morphism (g”,h”",k”) from G(M*) to G(M).
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Proof
Define (g~,h”,k") & (g"1,h"1,k"1) where all inverse maps exist
by assumption. Then

a) g”:X—eX” matches inputs via g; = g;l

b) h’:Q—=Q is surjective
¢) k”:Y—=Y is surjective
d) V(s“,e’)€Q", Vx€X, VT > 0 (see Lemma 1.3.1)
d.1) h7(85((s",e"),9.)) = h7 (6 (h(h"(s7,e7)),0 )) =
ho(h(8,(h"(s7,e7),6.))) = 8(h"(s",e"),¢.) .
d.2) h7(s;((s”,e7),g (x) )) = h‘(éé(h(h’(s‘,e’));gé(X)T)) =
h”(h(8;h"(s7,e7),g (g (X)) ))) = §(h7(s7,e7),x ) .
e) V(s’,e’)eQ”
| ‘k’(l’(s‘,e’)) = k(A" (h(h"(s",e7)))) =

k“(k(A(h"(s",e")))) = A(h"(s",e7)) . a

Notice that an invertible IM-DEIS morphism from G(M) to G(M”)
merely provides a relabeling of G(M) in terms of G(M”) and vice versa.
This relabeling is consistent vis-a-vis full states transitions and

output values.

We can now formally define

Definition 1.3.4

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and let
(g”,h”,k*) be a IM-DEIS morphism from G(M~) to G(M").
The composition of (g,h,k) and (g”,h”,k”) is a IM-DEIS morphism

from G(M) to G(M") denoted by (g,h,k)o(g”,h”,k”) and defined by
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- -~ P A - » - . .
(g,h,k)o(g",h",k”) = (gog”,h”oh,k70k) . 0

Definition 1.3.5

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M~).
The inverse of (g,h,k) is a IM-DEIS morphism from G(M*) to G(M)
denoted by (g,h,k)”! and defined, whenever g !, h™! and k™! exist, by

(g,h, k) 1 & @ L,n" LYy . . 0O

It is not difficult to see that this algebra-like structure can
be defined analogously on system morphisms at any structural level.
In general, the transitivity of a morphism relation on a class of

systems, imposes an obvious hierarchy which is almost a partial order.

' The imvertibility relation among systems (i.e. the existence

of an invertible morphism that connects them) is easily seen to be
an equivalence relation. Thus it partitions the underlying class of
systems into equivalence classes. This remark holds true for DEISs
and IM—DEIS morphisms in particular.

We now give a standard speciélization of IM-DEIS morphisms

(cf. Appendix A).

Definition 1.3.6

GM) = (T,X Q,Y,85,1) and G(M) = <T,Xé,QG,Q‘,Y’,Gé,A‘> are

G’QG’
called compatible if

a) X, = XG
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In the following definitions, i denotes the identity map.

Definition 1.3.7 4 |

Let G(M) and G(M”) be compatible DEISs, and let (i,h,i) be a
IM-DEIS morphism from G(M) to G(M7).
a) If Q=Q in G(M), then (i,h,i) is called a IM-DEIS l
homomorphism from G(M) to G(M~7).
b) If (i,h,i) is a IM-DEIS homomorphism from G(M) to G(M”) and
in addition h is bijective, then (i,h,i) is called a

IM-DEIS isomorphism from G(M) to G(M7). O

Lemma 1.3.2

The IM-DEIS homomorphism relation is preserved under composition.

The IM-DEIS isomorphism relation is preserved under inversion.

Proof

Follows immediately from Definition 1.3.7 and Theorems 1.3.1 and

1.3.2. o

IM-morphisms at the DEMS level are analogously defined. In

particular

Definition 1.3.8

Let SG(M) and SG(M‘) be DEMSs.

A trajectory morphism (MATCH,h,k) from TRAJ(q,w) to TRAJ(q",u")

(see Definition A.1.8 in Appendix A) is called a IM-trajectory

morphism if
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a) w and w” are matching input segments,

b) MATCH = i, _ a

1.4 Transitional Covering

This section develops a DEVS morphism concept, the so-called
transition covering DEVS morphism, based on the so-called transitional
covering relation. The essence of this relation is the ability to
perform a partial matching of sequential state jumps in two DEVSs.

Our preoccupation with jumps is motivated by their fundamental
importance in discrete event systems. In discrete event modeling
sitﬁations, sequential state jumps constitute system responses .to
significant events during system evolution. In contrast, during the
time intervals separating jumps, the system is considered quiescent,

since its state remains fixed throughout such intervals.

We start by formalizing the transitional covering relation concept.

Definition 1.4,1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M~).

We say that G(M) is a transitional covering of G(M”") (or simply,
that G(M) covers GM7)) if

a) h(s,e) = (s”,0) = e =0
In this case (g,h,k) is called a transition covering DEIS morphism
(abbreviatediTC—DEIS‘morphism). The transitibnal covering relation is

denoted G(M) 3 G(M~). , O

Thus G(M) 3G(M”), if whenever started from h-matching states,
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under g-matching inputs, a jump occurs in G(M”) only if a jump occurs
in G(M) at the same instant,

Consequently, every jump in G(M”) can be matched in time by a
jump in G(M), but not necessarily vice versa. In particular this means
that all sequential states of M” can be matched by sequential statés in

M." This observation motivates the following definition.

Definition 1.4.2

A transition covering DEVS morphism (abbreviated T'C-DEVS _morphism)
from M to M” is a quadruple (g,L,h,%), subject to the following restric-
tions:

a) g is a function g:X"—=X called the exfernal event encoding

function. |

b) L is a function L:S—eNU{0} called the transition counting

function where ScsS and N is the set of natural numbers.

¢) thisa surjective function h:S—=S* called the sequential

state decoding funetion.

d) ¥ is a surjective function %:Y—=Y~ called the output decoding

funetion.

e) Let 02 {(s,e)€Q: s= 8, (5.0((5,0,7)), e = T-0(3,m((3,0),7))

for some s€S and 0 s T < £°(1(8))}. If (s,e)e is associated
with (8,,7,) and (3,,1,), then“h(gl) = N(8,) and T, = T,.
f) For any se§ | |

R L(s) _ '
£1) em®) = 3 6, (5,1)

i=0

£.2) §¢(§,L(§)+1) €s

£.3) 11(3¢(§,L(§)*1)) = eéch(é))
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g) For any 5€§, 0 s 1 < ¢ (M(®), let s 2T (&,m((5,0),7)) and

g(b
e 21 o(s8,m((8,0),7)) . Then for any x” € X~
g-1) 8§,((s,e),g(x")) €8
g.2) h(sy((s,e),g(x7))) = 6&((h(§),r),x’)
g.3) *(A(s,e)) = A"(h(s),1)
In this case, we say that M is a transitional covering of M” (or simply

that M covers M”), and denote MIM~, O

We need of course to show that this terminology is consistent. To

do this, we will need

Lemma 1.4.1
For elements of Q in Definition 1.4.2, the representation
a) (s,e) = ('§¢(§,m(('s‘,0),r)), T - o(5,m((8,0),1)))
is equivalent to the representation

b) (s,e) = 65((3,0),4)

Proof

Follows immediately from Lemma 1.2.1. O

We now show that TC-DEVS morphisms induce TC-DEIS morphisms in a

natural way.

Theorem 1.4.1

If MaM” via a TC-DEVS morphism (g,L,H,%), then G(M) 3G(M") via

some TC-DEIS morphism (g,h,k).
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Proof
Define g to be input matching by setting g_ 2 & Next define Q to

be the set Q of Definition 1.4.2. In view of Lemma 1.4.1, every q€Q

has the form

(1) q= (s,e) = 6,((8,0),¢ ) for some SeSand 0 < 1 < 7 (H(§)) .

Now, define h:Q-—=Q” by

(2) h(s,e) = h(5,5(5,00,6) & MB),1) eQ”.

h is well-defined due to e) in Definition 1.4,2. It is surjective

since T is surjective and since 0 < 1 < & (H(8)) .

Finally define k é"iefrom Y onto Y~.

It follows from (2) that

(3) h(s,e) = (s°,0) = (s,e) = (5,0) => e=0.

Thus h is transition covering.

Now, for any §€§ and 0 < 1 < €°(h(3))

~

(1(s),7) =

(4) h(8;((5,0),¢.))

85((1(3),0),6.) = 65(h(5,0),6.)

due to (1) and (2).

For any s €5 and T = £°(h(8))

(5) h(85((3,0),4.)) = h(8,(5,L(5)+1),0) =
(3, (5,L(5)+1)),0) = (8;(N(5)),0) =
85(((3),0),4.) = 65(h(5,0),4.)

by £.1), £.2) and f.3) in Definition 1.4.2, (1) and (2).
In view of (1), (4) and (5), we conclude by induction on m((5,0),t) that

(6) h(8,((s,e),6.)) = §5(h(s,e),e), V(s,e)eQ, Vo ey

due to the composition property of GG and 66.
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Next, for any se8, 01 < t°(h(8)) and x“c X~

(7) h(8,((5,0),8(x))) = h(GG((§,0),§(X’)T)) =
h(8,,(85((3,0),8.),8(x")),0) = ((8,(55((3,0),¢.),8(x"))),0) =
(65 ((3),1),x7),0) = (8;(85(E(3),0),6.),x7),0) =
85(((3),0),x7) = 85(h(5,0),x7)

by the definitions of g and h above, the definitions of GG and

6(’; (see Definition 1.2.4), Lemma 1.4.,1, g.l1l) and g.2) in

Definition 1.4.2, (1) and (2).

In view of (1) and (7) we conclude by induction on m((§,0),'r) that

(8) h(35((5,0),8(x1) = 85(h(s,e),x)), Vis,e)eQ, Vxieqy

again due to the composition property of GG"and 66.

Finally, for any (s,e) €Q
(9) k(r(s,e)) =*(A(8;((5,0),4))) =
A7 (h(8),1) = A7(h(s,e))
by (1) and (2), Lemma 1.4.1 and g.3) in Definition 1.4.2.
We conclude from Definition 1.4._1 that (g,h,k) is a TC-DEIS

morphism as required.

Next, we prove that TC-DEIS morphisms induce TC-DEVS morphisms in

a natural way.

* Theorem 1.4.2

Let G(M) 3G(M’) via a TC-DEIS morphism (g,h,k). Then MIM* via

some TC-DEVS morphism (g,L,h,k).
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Proof
Consider the set §4 {seS: (s,0)eQ and h(s,0) = (s7,0)}.

Decompose h into h = (hl,hz) and define h:5—=S” by

(1) 1)

h1(§,0).
Next, let g £ £ and % 4 k.
Let (s,e) be in § of e) in Definition 1.4.2.

Suppose (s,e) is associated with (§1,Tl) and (§2,T2). Then

@) 8((5100,8, ) = (5,6) = §5((3,00,0, ) > h(5G((1,00,0, ) =

h(8G((55:00:0, 0) = 83hG31,00,0, ) = 85(h((,0,0, )) =
> SGU(),00,0, ) = 85,08, ) =

= MEB),T) = MG,),1))

due to the definitions of §, h and Q. Hence

and T, = 1T

(3) ‘h(él) = (s 1 2

)
Let S€S. Then there is (s”,0) € Q” such that h(s,0) = (s~,0).
Now,

(4) 85((s7,0),0, - g-)) = 83(N(5,0),0, . ) =

On the other hand

(5) Gé((S’,O),¢€,(S,)) = (5%(5'),0)

Hence, (4) and (5) imply

(6) h(85((5,0),8,-(5-))) = (85(s7),0)

By the transitional covering property, we deduce from (6) that

(GG((§’03’¢G‘(S’)) has the form
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(n & ((s 0,9, £ (s ,)) = (E¢(§,L+1),0) for some L = L(§) 2 0

Thus, (6) and (7) imply that during the interval (0,t°(s”)] we had
one autonomous transition in G(M”) from state (s*,0) to

state . (6 (s ), O), while in G(M) we had L+1 transitions from

state (s O) to state (6 (s,L+1),0) during the same time interval.

In view of (7) we can define a surjective map L:S—=NU {0}

such that
L(s) . .
(8) €7 (h(s)) = Z t(6¢(s,i)), VieS
i=0

Now, for any Se$§
(9) (3, (5,L(8)+1),0) = h(§;((5,0),0, .4 (5yy) =

(54;(11@)),0),

due to (8), and thé definitions of § and .

Thus, (9) shows that

(10) '<8_¢(§,L(§)+1) e$

by definition of S. Moreover, from (9) we deduce

(11)-h(§4(§,L(§)+1)) = G;Chcé))

by definition of Hh.

ne>

Next, for any ScSand 0 < 1 < £7(h(s)), let s (s ,m((s,0),1))

e

e =1~ o(3,m((5,0),7)) . Then for any x"€ X~

(12) h(8,((s,e),&(x")),0) = h(8,, (8, ((S 0),9,_ ),g(x’)))

h(8,5((3,0),8(x") )} = h(§,((3,0),g(x)))

85(h(5,0),x7) = (&5(85(h(3,0),6.),x7),0)

(‘Gﬁ(Gé(ﬁlﬁ) 50),9.),x7),0) = (85 ((h(8),1),x7),0)
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due to Lemma 1,4.1, by definitions of GG and 6(‘;' (see Definition 1.2.4),
and by definition of g, h and S.

Thus, (12) shows that
(13) §,((s,e),8(x")) €S
by definition of 8. Moreover, from (12) we deduce that
(14) (8 ((s,e),8(x7))) = 8, (((5),7),x7)
by definition of -h.
Finally, by Lemma 1.4.1 and the definition of % we have
(15) ¥(x(s,e)) = k(r(s,e)) =
A (h(s,e)) = A" (h(8;(3,0),4.)) =

A (85 (m(5,0),4.)) = A°(h(5,0),1) =

A7 (s) ,T)

We conclude from Definition 1.4,2 that (g,L,r,X) is a TC-DEVS morphism

as required. .

Corollary 1.4.1

{g,h,k) is a TC-DEIS morphism from G(M) to G(M*) iff (g,L/h,%) is
a TC-DEVS morphism from M to M~.

Moreover, in this case g = o> Tr= h1|§><{0} and ¥ = k.

Furthermore, h, (s,e) = 1(5) whenever (s,e) = 5G((§,0),¢T)e(§. 0

Theorem 1.4.2 shows that the essence of a TC-DEVS morphism from
M to M; is the ability to define a IM-DEIS morphism (g,h,k) from G(M)
to G(M?) such that h = (hl’hz) satisfies

hl(s,e) = h(s), VO s e < &£(s)

for some map fr on S & (s: (s,e) €Q for some e}.
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In other words h is definable whenever hl(s,e) does not depend on
e. This is, of course, possible iff all the jumps of G(M”) can be
matched in time with jumps of G(M), i.e. iff (g,h,k) is a TC-DEIS
morphism.

We now show that morphisms of the tranéitional covering type are

transitive.

Theorem 1.4.3

If (g,h,k) is a TC-DEIS morphism from G(M) to G(M”) and (g”,h”",k”)
A
is a TC-DEIS morphism from G(M*) to G(M"), then (g”,h",k") =

(g,h,k)0(g",h",k”) is a TC-DEIS morphism from G(M) to G(M").

We already know that (g”,h",k”) is a IM-DEIS morphism from G(M)
to G(M") by Theorem 1.3.1. It remains to show that
(1) h'(s,e) = (s",0) = e=0
Now, by definition
(2) h"(s,e) = h”(h(s,e)) = (s",0)
Since (g”,h”,k”) is a TC-DEIS morphism, (Zj implies
(3) h(s,e) = (s7,0) for some s“€S~,
But (g,h,k) is also a TC-DEIS morphism. Hence (3) implies
(4) e=0

which was to be proved. ' ’ (]

One can similarly show that TC-DEVS morphisms are transitive,
provided composition of TC-DEVSs is appropriately defined, viz.

", 1", 1", %" & (g,L,1,%)0(g",L° %) where

o
o
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1. g":x"—=X is defined by
g 2 gog”
2. L"#1(§9)-+NU{0} is defined by
Lty _ o,
L"(s) = ;é% L(6¢(s,1))
3. " 1(§°)—S" is defined by
1 & feon
4. ¥':Y-—=Y" is defined by

U é

*ok”

The proof ié omitted, since it is quite tedious and does not
provide additional insight into transition covering morphisms.

We shall, however, proceed to define the standard hierarchy of

TC-DEVS morphisms. In the following definitions i denotes the

identity function.

Definition 1.4.3

Two DEVSs M = (X,S,Y,t,8,)) and M* = (X*,S”°,Y”",¢t”,8",1") are
called compatible if
a) X=X~

b) Y =Y"

Definition 1.4.4

Let (i,L,ir,i) be a TC-DEVS morphism between compatible DEVSs

M and M-,
Then (i,L,h,i) is called a TC-DEVS homomorphism, if Q = Q.
A TC-DEVS homomorphism is called a TC-DEVS isomorphism, if in

addition h is injective.
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The concepts of TC-DEIS homomorphism and TC-DEIS isomorphism are
defined in the obvious way, similarly to the hierarchy of IM-DEIS
morphisms.

We conclude this section by carrying over the TC morphisms to the

DEMS level.

Definition 1.4.5

Let (g,h,k) be a TC-DEIS morphism from G(M) to G(M”). Let (§,h,k)
be the induced IM-DEMS morphism from SG(M) to SG(M’)' (See Definition
1.3.2).

Then (g,h,k) is called a TC-DEMS morphism from SG(M) to SG(M’)'

In this case we say that S )? and denote S

G(M) covers SG(M‘ G SG(M’)'
, O

Conclusion 1.4.1

Definition 1.4.5 requires that (g,h,k) be a TC-DEIS morphism from

G(M) to G(M ) iff (g,h,k) is a TC-DEMS morphism from SG(M) to SG(M,).EJ

Conclusion 1.4.1 and Corollary 1.4.1 give rise to the TC morphism
paradigm of Figure 1.4.1.
At the DEMS level, it is useful to restrict transitional covering

to particular trajectories as follows.

Definition 1.4.6

Let SG(M) and SG(M’) be DEMSs, and let (i,h,k) be a IM-trajectory

morphism from TRAJ(q,p) to TRAJ(q”,w”). (See Definition 1.3.8).

We say that (i,h,k) is a TC-trajectory morphism if

o
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(g,L,1,¥%)

(g,h,k) |
cM) P = G (M)

S B> Semn)

Figure 1.4.1: Relations among Discrete Event Structures and
the Associated Transitional Covering Morphisms.

‘ ’ : --
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a) h(STRAJq’m(t)) = (s*,0) = STRAJq,w(t) = (s,0).
In this case we say that TRAJ(q,w) is a transitional covering of
TRAJ(q”,w”) (or simply that TRAJ(q,w) covers TRAJ(q”,w”)), and denote

TRAJ (q,w) ITRAJ(q”,0”) . =

From Definition 1.4.6 we have the immediate

Conclusion 1.4.2

Let (g,L,h,k) be a TC-DEVS morphism from M to M” and let (g,h,k)
be the TC-DEIS morphism induced by it according to Theorem 1.4.1.
Then

—_ 4 — '
a) YVuw e, , VqeQ, STRAJ ~_. .. 3 STRAJ .
) VaeQ a,8(w") h(q) ,w

where g is defined in Definition 1.4.5. )

1.5 Transitional Matching

Transitional covering allows us to match in time all jumps of_a
morphic image, with some of the jumps of its morphic preimage. in |
addition this matching is consistent by virtue of the underlying ‘
discrete event morphism. | '

Thus, transitional covering is a situation whereby the morphic
preimage undergoes jumps at a '"rate" which is higher than in its morphic
image. The natural way to épecialize covering morphisms is to require
those ''rates'" to equal, so that all the jhmps in both the morbhic
preimage and.its morphic image can complefely be matched in time.

In accordance with the foregoing discussion, this situation will be

called transitional matching.

oem



52

We start by formally definingwit at the DEIS level.

Definition 1.5.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M"). We say
that G(M) and G(M”) are transitionally matching if
(s”,0) = e=0
(s",e”) =» e" =0

a) h(s,e)

n

b) h(s,0)

In this case (g,h,k) is called a transition matching DEIS morphism

(abbreviated IM-DEIS morphism). a

Definition 1.5.1 shows that a TM-DEIS morphism is a TC-DEIS
morphism satisfying condition b) in the above. This means that if
G(M) and G(M”) are started from h-matching states under g-matching
inputs, then G(M) undergoes a jump iff G(M”) undergoes a jump at that
very instant. |

The following theorems give necessary conditions for transitional

matching.

Theorem 1.5.1

Let (g,h,k) be a TM-DEIS morphism from G(M) to G(M"). Then

a) h(s,e) = (s7,e”) = €(s) - e =¢t7(s") - e~

Proof

‘Suppose

(1) h(s,e) = (s”,e")

Since (s,e) SG((s,O),¢e), we have by the composition property of

GG that
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(2) GG((S’G)’¢t(s)-e) = GG(SG((S’O)’¢G)’¢E(S)-G) =

5,((5,0),¢ ) = 8((s,00,0, () =

e+t (s)-e
(8,(),0) = (8,(5,1),0)

Therefore, using (2)

(3) 85((s7,87)u0g (gy.¢) = 8G(h(s,€)s0 oy ) =
h(85((5,6),04 (5)_g)) = N(8,(s),0)

By transitional matching, we conclude from (3) that

(4) Gé((S‘,e'),%(s)_e) = h(6¢'(5),0) = (6;(5‘ ,1),0)

for some i = 1.

But using the same line of reasoning as in (2)

(5) 65((s727),0, - (gmy_e-) = (85(s7,0) =
(34’)(5’,1),0) .

Comparing (4) and (5), we conclude that

(6) t(s) -e= t7(s”) - e~

Now, applying transition function preservation to (5) yields

(1) (855(57),0) =.83((57,7) 30y (g9 ) =
85(h(5,0),8, - gy o) = N(EG((5,0d 8000y o) -

By transitional matching, we conclude from (7) that

(8) 85((5,8),0, - (g-y_o-) = (§,(5,3),0)

for some j .2 1.

Comparing (2) and (8), we conclude that

(9) t(s) - e <&7(s”) - e”

Finally, a) follows from (6) and (S).

o=
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Lemma 1.5.1

Under the conditions of Theorem 1.5.1 we have, in particular, that
if h(s,e) = (s”,e”}, then

a) (s,00€Q = t(s) = £7°(s7).

Proof

By transitional matching

(1) (s,00eq => h(s,0) = (s°,0)

Hence we may set e = e” = 0 in condition a) of Theorem 1.5.1, and

condition a) of this lemma follows immediately.

Theorem 1.5.1 states that for TM-DEIS morphisms (g,h,k), the
residual times to the next jump of h-matching states, are always equal.
However, this is not true for the respective time advance functions,
unless as assérted in Lemma 1.5.1, the state in the morphic preimage
is such that the jump to its sequential component is in the morphism
domain. In this case we have the following characterization of TM-DEIS

morphisms.

Theorem 1.5.2

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and define
§‘é {s€S: (s,e)eQ for some 0 < e < t(s)}. Suppose Q satisfies
(a) (s,e)eq => (s,00€Q

Then (g,h,k) is a TM-DEIS morphism iff

there is a surjective map h:S—eS, such that

(b) V(s,e)€Q, h(s,e) = (h(s),e)
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Proof

(&) Suppose there is 1 satisfying (b).
Now, whenever h(s,e) = (s”,e”), then by (B)
(1) (s",e7) = (h(s),e)
and hence
(2) h(s,e) = (s",e”) = (e=0 iff e~ ; 0)
which is equivalent to the transitional matching property.
(=>) Suppose (g,h,k) is a TM-DEIS morphism.
Define h:5—S by
(3) () & hy(s,0) where h = (h ,h)).
If s“€ S”, take any s €S such that h(s,0) = (s°,0). Such s€S
exists by transitional matching and surjectiveness of h. Clearly,
h(s) = s” so that h is surjective. Moreover, by definition of h
(4) Vse€S, h(s,0) = (f(s),0)
But by Lemma 1.5.1 and in view of (a)
(5) VseS, €(s) = &°(h(s))
Finally, taking note-of (4) and (5) and using transition function
preservation, we have for any (s,e) €Q

(6) h(s,e) = h(8,((5,0),0,)) =
85(h(5,0),6,) = §5((n(s),0),8,) =

(h(s),e)

where (6) is identical to (b).

_When condition (a) in Theorem 1.5.2 does not hold, we have a

modified version of this theorem.
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Corollary 1,5.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”). Define
g4 {s€S: (s,e)eq => (s,0)€Q} where S is defined in Theorem 1.5.2,
and let Q-‘-} {(s,e)eQ: s€§ and 0 <e < &(s)}.
Then
a) (g,h|a,k) is a TM-DEIS morphism
iff
b) there is a surjective map‘h:§—4>s’ such that

V(s,e) €Q, h(s,e) = (f(s),e) a

We remark in passing that Theorem 1.5.2 and Corollary 1.5.1
constitute a sharpening of Theorem 6 in [Z1] Ch. X Sec. 10.5.
The concept of T@-DEIS morphisms motivates the following defini-

tion of TM-DEVS morphisms.

Definition 1.5.2

Let (g,L,,%¥) be a TC-DEVS morphism (see Definition 1.4.2) from

M to M~”.

We say that M and M” are transitionally matching if
a) L(8) = 0, Vie§
In this case, (g,L,h1i;k) is called a transition matching DEVS morphism

(abbreviated TM-DEVS morphism). ‘ R O

We again need to show that this definition is consistent. First
we show that TM-DEVS morphisms induce TM-DEIS morphisms according

to Theorem 1.4.1.

S N sm
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Theorem 1.5.3

Let (g,L,h,%) be a TM-DEVS morphism from M to M”. Then there is

a TM-DEIS morphism from G(M) to G(M~®).

Proof
Since (g,L,h,%) is a TC-DEVS morphism, we have that (g,h,k) of
Theorem 1.4.1 is a TC-DEIS morphism from 6(M) to G(M"). We show that
(g,h,k) is a TM-DEIS morphism.
By definition of TM-DEVS morphisms, it follows that for any se§
L(s) _
(1) €°h(s8) = €(5¢(S,i)) =
i=0
t(§¢(§,0)) = £(8)

due to f.1) in Definition 1.4,2. Furthermore,

(2) 5¢(S,L(S)+1) = 5¢(5,1) = 5¢(5)€S

by £.2) in Definition 1.4.2.

From (1) and (2) we conclude that

(3) Q= {(s,e): s €S, 0 <e < €(3)}

so that in particular

(4) (s,e)eQ = (s,00€Q

Clearly, every (s,e) € Q has the representation

~ A

(5) (s,e) = 6G((§,O),¢T), for T = e and s = s €S
Hence by (2) of Theorem 1.4.1, for any (s,e) €Q
(6) h(s,e) = h(§.((s,0),¢.)) = (ir(s),e)

where Tr is surjectiye by definition.

We conclude from Theorem 1.5.2 that (g,h;k) is a TM-DEIS morphism.

O
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Next, we show that TM-DEIS morphisms induce TM-DEVS morphisms

according to Theorem 1.4.2.

Theorem 1.5.4

Let (g,h,k) be a TM-DEIS morphism from G(M) to G(M"). Then there

is a TM-DEVS morphism from M to M~.

Since (g,h,k) is a TM-DEIS morphism, we have that (g,L,h,%) of
Theorem 1.4.2 is a TC-DEVS morphism from M to M”. We show that
(g,L,,%) is a TM-DEVS morphism.

It remains to show that

(1) L) = 0, V§eS$

Consider any seSs. By definition of S in Theorem 1.4.2 we have that
(§,0) € Q, whence by Lemma 1,5.1

(2) £(8) = €7 (h, (5,0))

where h = (h;,h)). But h1(§,0) = h(s) by (1) of Theorem 1.4.2.
Hence (2) implies

(3) #(8) = &7 (h(s))

By £.1) in Definition 1.4.2

) L(§) _ A
(4) & M) = ) t(éq)(s,i))

i=0

Comparing (3) and (4) gives us
L(s) _ A

5) 3 e, (5,1)) = £(5)
izo ¢

Since M is regular we conclude that L(S) = O which was to be proved.

d
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The hierarchies of TM morphisms and their variants is analogous to

the hierarchies of TC morphisms in the previous section.

We now show that the transitional matching relation is transitive.

Theorem 1.5.5

If (g,h,k) is a TM-DEIS morphism from G(M) to G(M”) and (g”",h",k")

is a TM-DEIS morphism from G(M*) to G(M"), then

(g",h", k" £ (g,h,k)0(g”,h",k") is a TM-DEIS morphism from G(M) to G(M").

Proof

We already know by Theorem 1.4.3 that (g”,h”,k") is a TC-DEIé
morphism from G(M") to G(M").
It remains to show
(1) h"(s,0) = (s",e") = e" =0
By definition of h" we may rewrite the antecedent of (1) as
(2) h"(s,0) = h*(h(s,0)) = (s",e")
Denote h(s,0) = (s”,e”). By transitional matching of G(M) and G(M")
via (g,h,k)
(3) h(s,0) = (s”,e”) => e =0
Setting (3) in (2) yields
(4) h"(s,0) = h"(s*,0) = (s",e")
But by transitional matching of G(M”) and G(M") via (g”,h",k"), (4)
implies
(5) e"=0

which was to be proved.
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The proof at the level of TM-DEVS morphisms is analogous and will

be omitted.

A sufficient condition ensuring an invertible TC-DEIS morphism to

be a TM-DEIS morphism is given in

Theorem 1.5.6

Let G(M) 3G(M”) via an invertible TC-DEIS state-morphism (g,h).
Supposée that in addition G(M”) 3G(M”) via the inverse TC-DEIS
state-morphism (g,h)" 1.

Then G(M) and G(M”) are transitionally matching.

Proof
By definition h:Q—=Q” is bijective and h™!:Q"—~Q is bijective.

Since G(M) covers G(M”) it follows that

(1) h(s,e) = (s°,0) => e =0
Now, assume

(2) h(s,0) = (s7,e”)

Applying h™! on both sides of (2) gives

(3) (s,0) = h"1l(s",e")

But since G(M”) covers G(M) via (g,h) ! we have
(4) h'l(s",e”) = (s,0) = e’ =0

From (2), (3) and (4) we conclude

(5) h(s,0) = (s,e”) = e =0

Finally (1) and (5) show that G(M) and G(M”) are transitionally matching.
a



61

While a chain of TC morphisms produces a sequence of discrete event
systems with a ""decreasing rate" of jumps, a chain of TM morphisms keeps

the jump "rate" in the sequence ''fixed".

T™ isomorphisms are easily seen to partition a class of discrete
event systems into equivalence classes of mutually‘TM isomorphic systems.
In each such class, whenever the members are started in h-matching states
and evolve under g-matching input segments, théy will always undergo
simultaneous jumps throughout the evolution.

A TM morphism paradigm can be derived analogously to the TC

morphism paradigm depicted in Figure 1.4.1.
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1.6 The Completion and Parallel Composition Operations

This section discusses two operations on discrete event systems:
the so-called completion operation defined on IM morphic pairs of
DEVSs, and the parallel composition operation defined for every pair

of DEVSs.

The completion operation is motivated by the heuristic observation
that every input matching morphism can be strengthened to a transition
covering one, in a canonical manner. This is achieved by a "completion"
procedure of the morphic preimage, relative to the morphic image. The
operation is carried out by the transitional completion algorithm,
which is embedded in the following procedure.

Our starting point is any pair of DEVSs M = (X,S,Y,%,8,\) and
M* = {(X*,$°,Y",t",8",1"), provided there is a IM-DEIS morphism (g,h,k)
from G(M) to G(M”). The procedure produces a 'complete'" DEVS
M= (X,é,Y,E,E,i) in which é, 5, 8§ and X are constructively defined
by the Transitional Completion Algorithm, to be described later.

This description relies heavily on the definitions of two auxiliary

functions which we now proceed to introduce.

First define a function eJ:S-*>[O,w] by

fhin{o < e < €(s): 9s°€S” 2 h(s,e) = (s°,0)}, if the minimum

A
eJ(s) = exists
t(s), otherwise

Intuitively, eJ(s) gives the time to the first jump in either M or M”
when started autonomously from states (s,0) and h(s,0) respectively.
Next, denote h(s,0) = (s”,e”) whenever (s,0)c Q, and define a

function J:S—=NuU{0}U{~} by
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0, if eJ(s) = t(s)

3(s) & { m7((s”,e7),8(s)), if e;(s) < (s) and h,(8,(s),0) # 0

¢

m°((s*,e”),t(s)) - 1, if eJ(s) < %(s) and h2(6¢(s),0) =0

where m” is the jump counter function (see Definition 1.2.3) in M” and
h2 is the clock coordinate in h = (hl,hz). Intuitively, J(s) gives
the number of jumps that M” undergoes autonomously from state h(s,0)

during the time interval (0,%t(s)).

We are now ready to describe the Transitional Completion Algorithm.

Algorithm 1.6.1 (Transitional Completion Algorithm)

For any (s,0) € Q denote h(s,0) = (s”,e”). Then perform for any

s €S the following:

1) Put the sequence {§i}g£8) in S, where Ei & (i,s), 0 <£i < J(s).

We assume, without loss of generality, that SNS” = 9,
so that S, S and S are mutually disjoint.
2) Define £:S—(0,»] by

( s s
eJ(s), if i = 0 and eJ(s) >0

t°(s”), if i = 0 and eJ(s) =0

~ o~ A
€(s;) = { €, (s7,1)), 1f 0 <i < J(s)
J(s)-1 ’

t(s) - ¥ G, ifi= J(s)
1=0

3) Define 8:Qx(XU{¢})—=S by

~

Sivl = (i+1,s), if 0 <1i < J(s)

l
ne>

$ar (0,8,()), if i = J(s)

o
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i-1
8,(G5;,8),) & (0,8((5, T, (5,)+2),50)

4) Define A:Q—=Y by
~ o~ o~ A i-1 -
A(s;,e) = A(s,;ggt(sj)+e)

This completes the Transitional Completion Algorithm.

Notice that whenever s €S - §, where S = {s€S: (s,e)€qQ for

some 0 < e < £(s)}, then the minimum is undefined and we always have

eJ(s) = t(s). Consequently, in this case J(s) = 0, always. This fact

renders steps 1) -~ 4) meaningful for all s €8S.
We are now ready to define the transitional completion operation

on morphic DEVSs.

Definition 1.6.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”). The

transitional completion of M relative to M” (denoted M(M”)) is a

P

= X

>4

a)

b)

<
i

Y

~

c) S, £, § and X are defined by applying Algorithm 1.6.1 (the
Transitional Completion Algorithm) to each s €S.

In this case we also say that G(M) is the transitional completion of

G(M*) relative to G(M~).

The construction of a transitional completion is illustrated in

]
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Example 1.6.1

Let M = (X,S,Y,t,6,)) be defined by
X=29
S = {so,sl}
Y = [0,1/27)

t(so) = t(sl) =T
6¢(si) = S1;

A(si,e) = e (mod'1l/21)

Let M~”

(X°,8°,Y°,£°,6",1") be defined by
X =9
S” = {so,sl}

Y* = [0,1/21)

t’(sa) 3/2t, t’(si) = 1/2t

|
7]

50D = sis
A(si,e) = e (mod 1/271)

Define a IM-DEIS morphism (g,h,k) from G(M) to G(M”) where

g is the empty function
h:Q—=Q” is defined by

(sf,e), if i = 0
h(s,,e) = (sgst +€), ifi=1 and 0 <e < 1/2t
(si, e - 1/21t), otherwise

k:Y—Y~” is the identity function

o
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Now,

t(s.), ifi=0
e (s,) = 0
J Y1

1/21, if i = 1

whence J(si) =i, 1= 0,1.

N B I VY

Define M = (X,S,Y,%,8,X) by

X=20

§= (0,5, (0,5)), (1,s))}

Y = [0,1/27)

%(o,so) = t(sg) = T, %(o,sl) = E(l,sl) = 1/21

8,(0,50) = (0,5)), 8,(0,5)) = (1,5)), 8,(1,5)) = (0,5
X((j.s5),e) = e (mod 1/27)

Then M is the transitional completion of M relative to M~. O

From the completion algorithm we derive the following conclusions.

Conclusion 1.6.1

The autonomous operation of M(M”) is periodic in the following
sense. If M is started in state ((O,SJ,O)GEQ, then it evolves autono-
mously through the sequential state sequence

{(0,s),(1,8),.-.,(J(5),s), (0,8,(s)),...}, if J(s) < =

k{(o,s),(l,s),...}, if J(s) = =
The general scheme is

(0,s) - - - (o,E;(s,l)) - - - (0,5&(5,2)) - -

- - - (0,8, (s,n)) -~ - - ...
where the dashes together with their leftmost sequential states stand

for some periodic sequence. 0O
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Conclusion 1.6.2

It follows from 2) and 3) in Algorithm 1.6.1 that for every
(s,e) €Q, the clock e has the representation

a) e =0o((0,s),i) + e for some 0 < i < J(s) and 0 < e < t(i,s)

where ¢ is the total time advance function (see Definition 1.2.2) of M.

Moreover, this representation is unique. ' 0

Conclusion 1.6.3

It follows from 2) and 3) in Algorithm 1.6.1 that
" (@) h(s,e) = (s7,0)

| iff

(b) ez(s) < &(s)

and -

i
ey(s) + th'(g;(s(;,j)), if e (s) > 0
j=

i
Y78, (s5,33), if €5(s) = 0

3=

for some 0 < i < J(s), where s 2 hl(s,O). O

0

The semantics of the transitional completion operation'are
suggested by the terminology. Intuitively, it amounts to'adding jumps
to the morphic preimage, which correspond to all jumps in the morphic
image. This is done by adding sequential states to the former and
redefining its time advance function, transition function and the

output function, in a consistent manner. In other words, the transi-
tional completion operation takes any morphic preimage and completes

it into a transitional cover of its morphic image.
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Formally, we have

Theorem 1.6.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”). Let
M 4 M(M‘) be the transitional completion of M” relative to M”. Then
a) G(M) aG(M) via a TC-DEIS isomorphism (i,h,1i)

b) G(M) 3G(M”) via a TC-DEIS morphism (g,h,k).

Proof
Define a IM-DEIS morphism (i,h,i) from G(M) to G(M), where h

is given by

(1) V(({,s),8) e, h((i,5),8) & (5,5((0,5),i) + &)

and o is the total time advance function of M. Observe that

0 < 0((0,s),i) + & < &(s), by 2) in Algorithm 1.6.1.

For any (s,e) €Q, represent € as e = o((0,s),i) + e for some

0<i<J(s) and 0 < e < &(i,s), according to Conclusion 1.6.2. Now,

take ((i,s),&)eQ. Then h((i,s),e) = (s,e) by (1), and h is shown to

be from § onto Q. Next, suppose
(2) h((iy,s,).€)) = h((i,,s,),e))

Then necessarily S; =S, 4 s by (1). Hence we can rewrite (2) as

(3) (s,6((0,8),1;) + &) = (s,0((0,5),1,) +.&,))
where the representations of the clocks in (3) are unique by

Conclusion 1.6, 2.

Conclude that i, = i, and 61 =‘52 from which follows

) ((1),5),8)) = ((,,5,),8,)

We have that (2) implies (4), i.e. h is injective.
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~Now, in view of Conclusion 1.6.1 it suffices to show that transition

function preservation holds only within the indicated periods. This
is true due to the composition property of transition functions.
More accurately, it suffices to show

(5) h(§G(((0,S),0),¢T))‘= 85 (h((0,5),0),¢.)

only for all ((0,s),0) e(i, and 0 < 1 < t(s), and

(6) h(3,(((1,5),8),x),0) = (§,(R((i,s),€),x),0)

for any ((i,s),e)eQ and xeX.

Now,

(7) 3500(0,5),0),8) = ((i,s),€)
for some 0 < i < J(s) such that
(8) T = 0((0,s),i) + e

Using (7), (1) and (8) we have

(9) h(8;(((0,5),0),6.)) = h((i,s),e)

(5,5((0,8),1) + &) = (s,7)

while using (1) we obtain

(10) 85(R((0,5),0),8) = §:((5,00,0.) = (5,7)

Thus, (9) and (10) show that (5) holds. In view.of 3) in Algorithm

‘1.6.1, (9) and (1), we find that

(11) R(Ey(((1,5),8),%),0) = h((0,8,((s,5((0,5),i) + &),x)),0) =
(8,((5,5((0,5),1) + €),%),0) = (8,(R((i,s),8),x),0)

and (11) shows that (6) holds.

Next, we show preservation of output function. From 4) in Algorithm

1.6.1 we immediately deduce that for any ((i,s),é)e.é

=
e
-
o2

()
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(12)  A((i,s),8) = A(s,5((0,s),i) + &) = A(h((i,s),e))
We have shown that (i,h,i) is a IM-DEIS isomorphism from G(M) to G(M)
and it remains to show that G(M) 3G(M) via (i,h,i).
Suppose
(13) h((i,s),8) = (s,0)
By the representation of Conclusion 1.6.2, (13) implies
(14) &((0,s),i) + e =0
which shows in particular that
(15) e=0
Thus, from (13) and (15) we conclude that G(M)IG(M) as required,
and the proof of a) is concluded.
Next define (,h,%) & (i,h,i)o(g,h,k) = (g,hoh,k).
Then (E,ﬁ,i) is a IM-DEIS morphism from G(M) to G(M”) by Theorem
1.3.1. It remains to show that G(M) 2G6(M*) via (E,ﬁ,ﬁ).
Suppose
(6) h((i,s),e) = (s-,0)

Then

17) h(h((i,s),&)) = (s7,0).

e

Denoting h((i,s),&) = (s,e)}, (17) becomes
: (18) h(s,e) = (S’,O)

By Conclusion 1.6.3 and due to (18) we may represent e as follows:

i
ey(s) + ;g%t'(gg(S',j)), if e;(s) > 0

19) e

i
L e (5(s7,30), 3f e5(s) = 0

J

where s~ 4 hl(s,O).



(20) e =

On the other hand, from Conclusion 1.6.2 we have that e has a
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But by 2) in Algorithm 1.6.1, (19) implies that

o ((0,s),1)

Ly
ol

preen

(2
L2

[

o

.
rr
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unique representation

(21) e = a((0,s),i) + &

Equating (20) to (21) finally gives
(22) e=0

We conclude that (16) implies (22), and the proof of b) is completed.
O

Theorem 1.6.1 shows that every transition in M and M” can be
matched by a transition in M(M*). The following theorem shows that
conversely, every transition in M(M‘) can be matched by a transition in

either M or M~,

Theorem 1.6.2

Let (g,h,k) be'a IM-DEIS morphism from G(M) to G(M”) and let
MARMWMY). Let furthef h and h be as in Theorem 1.6.1.
Suppose qe€ Q. Then |
a) ﬁ(ﬁ) has fhe form (s,0)
or

b) ﬁ(ﬁ) has the form (s*,0).

Proof
Let q = ((i,s),0) where s€S, 0 < i < J(s), and denote
h(s,0) & (s”,e").

Suppose i = 0. Then by definition of h
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h((0,s),0) = (s,0)

(1) h(@
Suppose 0 < i < J(s). Then by definition of h

() h@ = h(h((,s),0)) = h(s,5((0,s),i))

But by the definition of £ in 2) of Algorithm 1.6.1

7 i
e;(s) + j;s'(c;(s',j)), if e (s) > 0

(3) 8((0,5)’1) = 4 .
i

2 e°(5,(57,3)), if eg(s) = 0

j=0

“

Notice that we also may assume

(4) e (s) < (s)

or else J(s) = 0 by definition of J.
Now, in view of (2), (3) and (4), Conclusion 1.6.3 implies that

(5) h(q) = h(s,5((0,s),i)) = (s°,0).

and the proof is complete. m
Corollary 1.6.1

Let (S,e) € Q. Then by Theorems 1.6.1 and 1.6.2
8 = 0 iff R(5,8) = (s,0) or h(5,8) = (s~,0). O

Corollary 1.6.1 says in fact that the states of M, M” and ﬁ(M’) can

be matched in such a way that a jump occurs in M(M’) iff a jump occurs

concurrently in M or in M”. Another way to state it is as follows.

Theorem 1.6.3

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and let

i 2 M(M*). Let further h and h be as in Theorem 1.6.1.
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For any (s,€)€ Q,denote h(s,é€) & (s,e) € Q and h(§,8) 4 (s",e7) eQ”

whenever ﬁ(§,é) is defined. Then

a) £(s) -e=%(s) - e
or
b) £(s) - e =¢t"(s”) - e~
Proof

Suppose both a) and b) are false for some (5,8)¢ Q. Let
(1) GG((S’e),¢£(§)_é) = (6¢(5):0)
Suppose that
(2) £(8) - e > €(s) - e

By transition function preservation

(3) .E(EG((g’é)’q’t(s)-e)) = GG(E(g,é):‘#t(s)_e) =

GG((S’e)’¢t(s)—e) = (6¢(S),0)

Now, G(ﬂ):lG(M) by Theorem 1.6.1, so that (3) implies
3 s a = (&% s*xe & '

4 GG((S’e)’¢t(s)-e) (s*,0) for some s*€ S

But (4) contrédicts (1), in view of (2). Hence we must assume

(5) #(5) - e <%(s) -e

Consequently, by transition function preservation

(6) h(gG((sse),¢€(§)_é)) = GG(h(S,e)s¢€(§)_é) =
GG((S:e):¢§(§)_é) = (s,e + €(s) - e)

where e + £(s) - e > 0.

Next, suppose -

(7) () - € > £7°(s”) - e~

and obtain whenever ﬁ is defined

[4sag
=
[
e
i
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(8) h(SG((s’e)’(bt’(s’)—e’)) = 6G(h(s,e),¢'€‘(s’)—e‘) =
GG((S ’e )’¢t’(s')-e’) = (64)(5’)’0)
Now G(M) 3 G(M~) by Theorem 1.6.1, so that (8) implies
9) GG((s’e)’¢t’(s’)—e‘) = (s*,0) for some s*€S.
But (9) contradicts (1) in view of (7). Hence we must assume
(10) £(s) - e < £°(s”) - e~
Consequently, by transition fﬁnction preservation
(11) h(GG((S’e):‘b%(g)_é)) = GG(h(S,e)"b%(g)_é) =
GG((S € ):¢€(§)_é) = (S &+ E(S) - e)
where e” + £(s) - & > 0.

Combining (6) and (11) and using (1) we see that

(12) H(a¢(§),03 (s,e + £(s) - e)
and

(13) ﬁ(s¢(§),0) = (se”+ EB) - &
whenever h is defined.

Observe that (12) and (13) contradict Corollary 1.6.1. Hence, a) and

b) cannot be both false; i.e. a) or b) must be true. .

We now turn our attentioﬁ back to the transitional completion
algorithm, in the light of the above corollaries and theorems.

Essentially, the algorithm '"takes" M and 'superimposes' M” on it,
so as to obtain M{M~”). The process of "taking" M is formalized by map-
ping each sequential state s€ 5 into the sequential state (0,s}e‘§. The
process of "superimposing' M” on M is formalized by génerating the se-

quence of sequential states {(i,s)}gﬁi), to be added. to the state (0,s).
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This sequence corresponds to jumps in M~ that are not matched by
corresponding ones in M.

All in all, each state s &S induces a sequence of states
{(i,s)}giz)e S where the map sF*S{(i,s)}gfg) is obviously injective.
If MOM~” to begin with, then all jumps in M~ are already matched by
jumps in M, and the transitional completion algorithm reduces to
relabeling M to M via the map s+ (0,s). This fact is formalized as

follows.

Theorem 1.6.4

>

Suppose G(M) 3 G(M~) and let M = M(M-). Then G(M) is TM-DEIS

isomorphic to G(M).

Proof

Consider the TC-DEIS isomorphism (i,ﬂ;i) of Theorem 1.6;1.

Since GIM)JaG(M”), it follows from Algorithm 1.6.1 that eJ(s) = 0 for

all s€S. Hence, J(s) = 0 for all se€S. Consequently, S = {(0,s): s€S}l.

Furthefmore, i(O,s) = £(s) for any (0,s)€_§. The map h reduces then to
(1) h((0,s),8) = (s,8), V(0,5)€S, VO <& < £(0,s)

Thus we can define #1:S—S by

2) h(o,s) &s

and h is clearly surjective. Moreover,

(3) h((0,s),8) = (n(0,s),8), V(0,s)€8, VO <& < £(0,s)

Hence by Theorem 1.5.2, (3) implies that (i,ﬁ,i) is a TM-DEIS isomqr—

phism as was to be proved.

O

"
M
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The transitional completion operation can be viewed as a "binary
operation'" acting on pairs of IM morphic DEVSs. As such, it is inher-
ently asymmetric, because it depends on the direction of the underlying
IM-DEVS morphism. Actually, if we commute the operands, the operation
could be undefined, since the existence of a IM-DEVS morphism in one
direction does not guarantee its existence.in the other direction.
Consequently, we speak about the completion operation as being performed
on the morphic preimage with respect to its morphic image.

It is possible, however, to generalize the completion operation
to a full-fledged binary operation on the class of DEVSs, by disposing
altogether of the dependence on an underlying IM-DEVS morphism. We
use the term '"parallel composition'' to suggest the heuristic content
of the operation. Intuitively, the two operand DEVSs give rise to
their '"parallel composition DEVS" by letting them run concurrently from
any two initial states under any two input segments of equal length.
The resulting DEVS undergoes a jump whenever either of its operands
does, so that the state trajectory, as far as jumps are concerned, is a
superposition of the operands' trajectories.

Formally, we define

Definition 1.6.2

Let M = (X,S,Y,t,5,A) and M" = (X*,S°,Y",&",8°,1°) be any two DEVSs.

The parallel composition of M and M* (denoted M®M”) is a DEVS

M* = (X*,S*,Y*,&*% 8% ,A*) where

a) X* = ((XU{ehHxX"u{eh)) - (4,9}
b) s* = Qe
c) Y* é YxY -~

I NN N N e
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d) V((s,e),(s”,e”)) eS*,

*((s,e),(s”,e”)) £ min{e(s)-e,e”(s")-e"}

e) 6% is defined as follows,
e.1) Vs* = ((s,e),(s",e”)) €5*,

85((5,€),(s7,e7) 4
. |
((6¢(5),0),(S‘,e‘ + £(s))), if €(s)-e < £7°(s7)-e”

( (spe + £7(57),(8;(s7,00), if &(s)-e > €7 (s7)-e”

L(,(Gq’(S)’0),(64"(5‘),0))’ if €(s)-e = €7°(s”)-e”

e.2) Vs*

((s,e),(s”,e7)) €5*, VO < e* < t*(s*),

Vx*

1]

(x,x7) € X*,
8 ((s*,e%),x*) 2
r —
((8,((s,e + %),X),0),(s",6" + e¥)), if x*€Xx{¢}

< ((s,e + e*), (8y((s”,e” + e*),x"),0)), if x* € {p}xx~

((8)y((s,e + e*),?),O),(Gﬁ((S‘,e’ + e*),x7),0)), if
.

X*€XxX”
f) V(s*,e*) = (((s,e),(s",e")),e*) eQ*,

A¥(s*,e*) = (M(s,e + e*),1"(s",e” + e*)) O

It is not difficult to see that if G(M) and G(M”) are IM-DEIS
morphic, then G(M@®M”") subsumes G(M(M’)) in the senSe that there is a
TM-DEIS morphism from the former to the latter. The difference between
M(M”) and M@M’ in this case, is simply a matter of viewing the same

phenomenon from different angles. In the process of creating M(M*),

* M is viewed as operating on M” via the completion operation. This

asymmetry is not required to obtain-M @M’ and both DEVSs are considered

L
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as operands.

Although, we shall not engage here in a detailed discussion of the
properties of the parallel composition operation, we point out a
number of observations.

First, the & operation is associative, provided equality of M and
M” is defined as the existence of an invertible TM-DEIS morphism
between G(M) and G(M™).

Second, the @ operation is commutative in the same sense of
equality.

Third, if M* = M®M" then M*3 M and M*3 M~.

Finally, we point out that a finite parallel composition agDMa‘

is a special case of a DEVN whose components {Ma}a €D do not interact.

In other words, the '"topology" (influence graph) of a parallel composi-
tion reduces to a collection of isolated nodes.

The ability to describe a DEVS M as a DEVN, and in particular the
ability to represent M as a parallel composition, entails a conceptual

simplification of the system under investigation.

.,- -
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1.7 Standard Covers

In this section we specialize the concept of transitional covers
and discuss some of the resulting properties. The specialized transi-
tional covers considered are the so-called standard covers, exhaustive
covers, minimal standard covers and exhaustive standard covers. These
involve covering relations between a DEIS G(M*) and two other
IM-DEIS morphic DEISs G(M)'and GM7). 1t wili be shown that the
exhaustive standard cover and the minimal standard cover are equivalent
concepts which are embodied in a canonical manner by G(ﬂ), where
A M(M’). In the sequel, we think of the specialized covers as
running not only between DEISs but also between the underlying DEVSs.

Our starting point is

‘Definition 1.7.1

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”) and
let M* = (X*,S*,+,¢*,6%,+) be a state-DEVS.

G(M*) is called a standard cover (abbreviated SC) of G(M) and
G(M*) if G(M*) satisfies the following:

a) G(M*)3G(M) via a TC-DEIS state-isomorphism (i,h*);

b) GM*)IAG(M”) via the TC-DEIS state-morphism

(g**,h¥*) & (i,h*)0(g,h) = (g,hoh*) . | O

The relations among the maps of Definition 1.7.1 are depicted in

Figure 1.7.1.

Conclusion 1.7.1

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M”)

Lound
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(g** h**) =

(i,h*) = (i,h*)o(g,h)

Figure 1.7.1: Relations among the Maps of the Standard
Cover Concept.
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>

and M* ﬁ(M‘), then by Theorem 1.6.1 G(M*) is a SC of M and M~ via

>

(i,h*) (i,h) and (g**,h**) 4 (i,ﬁ)o(g,h)

where h is defined in the proof of Theorem 1.6.1. 0

Definition 1.7.2

Let M* = (X*,S* « ¢* §* «) be a state-DEVS. Let (g,h) be a IM-DEIS
state—morphisﬁ from G(M*) to G(M) with domain ﬁi, and let (g”,h”) be a
IM-DEIS state-morphism from G(M*) to G(M”) with domain 63.

G(M*) is called an exhaustive cover (abbreviated EC) of G(M) and
G(M™) if

a) QU=

b) h(s*,e) = (s,0)e€Q or h7(s*,e) = (s7,0)€Q” <= e =0

for any (s*,e) €Q* | , O

‘If h(s*,0) or h”“(s*,0) are undefined, then the logical value of the
corresponding disjunct in b) is 'false'. Notice, however, that a)
guarantees that there is no q*e Q* for which both h(s*,0) and h”(s*,0)
are undefined. Consequently, every jump in M* can be matched by a
jump in M or M, so that the jump matchiﬁg is exhaustive. Conversely,

M* covers both M and M” due to condition b).

Definition 1.7.3

A DEIS G(M*) is an exhaustive standard cover (abbreviated ESC) of

two DEISs G(M) and G(M”), if G(M*) is both a SC and a EC of G(M) and

G(M”) via the same maps. (See Figure 1.7.1). t]

o
=
<™

o=

(2]
L
Ll
=
o]
r

[ 4



82

Conclusion 1.7.2

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M”) and
M* 2 M(M’),then G(M*) is a ESC of G(M) and G(M”) by Theorem 1.6.2

and Corollary 1.6.1. ' 0

Theorem 1.7.1

- Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”). Suppose
that G(M*) is a ESC of G(M) and G(M”) via a TC-DEIS state-isomorphism
(i,h*), and the TC-DEIS state-morphism (g**,h**) & (i,h*)o(g,h)
respectively. Let M = (i,é,-,é,é,-) be a state-DEVS and suppose that
(i,ﬁ*) is a TM-DEIS state-isomorphism from G(M*) to G(ﬁ).

Then G(f) is a ESC of G(M) and G(M").

Refer to Figure 1.7.2. Define a IM—DEiS state-isomorphism from
G(M) to G(M) by
(1) (i,0) & (@,h00@,h*) = (d,h*of*)
Next, define a IM-DEIS state-morphism from G(ﬂ) to G(M”) by
@) (i,0) & 1,R)00g,h) = (G,h*)0(,h*)o(g,h) = (1,h*)0(g**,h**)
Clearly, (i,ﬁ) is a TC-DEIS state-isomorphism as a composition of two
TC-DEIS state-isomorphisms, and (i,ﬁ) is a TC-DEIS state-morphism as a
composition of two TC-DEIS state-morphisms (see Theorem 1.4.3).
We conclude that G(ﬁ) is a SC of G(M) and G(M*), and it remains to show
that G(M) is exhaustive.
Obviously ﬁ_l(Q)LJﬁ-l(Q') = Q, since A1 (Q) = Q.
From the TM-DEIS state-isomorphism (i,h*) we have (see Theorem 1.5.2)

(3) (5,e)e Q €< h*(3,e) = (s*,e) e Q* for some s* & S*.
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G(M)

(i,h) =
= (1,h0)0(1,h%)

(i,h) =
= (i,h*)o(g**,h**)

G (M*)
(i,h*)
(g**,h**) =
= (i,h*)o(g,h)
(g,h) .
GM) ~— ' [ G(M™)

Figure 1.7.2: Relations among the Maps of Theorem 1.7.1.
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Since G(M*) is a ESC of G(M) and G(M"), for any (s*,e) €Q*

(4) h*(s*,e) = (s,0) €Q or h**(s*,e}) = (s°,00eQ” &> e =0
Setting (3) in (4) yields for any (§,e)€Q

(5) h*(h*(8,e)) = (s,0)€Q or h**(h*(5,e)) = (s",0)€Q” & e =0
Finally, (5) is equivalent by (1) and (2) to

(6) h(5,0) = (s,0)eQ or h(3,0) = (s*,00€Q” <> e =0 0

Definition 1.7.4

Let (g,h) be a IM-DEIS morphism from G(M) to G(M”). Let G(M*) be
a SC of G(M) and G(M”) via a TC-DEIS state-isomorphism (i,h*) and a
TC-DEIS state-morphism (g**,h**) 4 (i,h*)o(g,h) respectively.

We say that G(M*) is a minimal standard cover (abbreviated MSC) of
G(M) and G(M”), if for any state-DEVS M =(X,§,+,£,8,+) such that G(M) is
a SC of G(M) and G(M”) via any TC-DEIS state-isomorphism (i,h) and
the TC-DEIS state-morphism (§,ﬁ) 4 (i,h)o(g,h), we have that G (M)

covers G(M*) via the TC-DEIS state-morphism (g*,h*) = (i,ﬁ)o(i,h*)-l.[]

The relations among the morphisms of Definition 1.7.4 are depicted

in Figure 1.7.3.

Theorem 1.7.2

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”). Let
G(M*) be a ESC of G(M) and G(M”) via a TC-DEIS state-isomorphism (i,h*)
and the TC-DEIS state-morphism (g**,h**) = (i,h*)o(g,h) respectively.

Then G(M*) is a MSC of G(M) and G(M”).
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g0 =
G, - (G,hole.n
ﬁw*vw*u = Aw*.m*unu -
= ?3093; = ?Eo?&;

G(M*)

(g** h**) =

- (i,h*)0(g,h)

(i,h*)
(g,h)

G(M™)

Relations among the Maps of the Minimal
gtandard CoveT concept.

Figure 1.7.3:
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Proof
Obviously G(M*) is a SC of G(M) and G(M”) via (i,h*) and (g,hoh*)
respectively, by definition of ESC.
It remains to show that G(M*) is minimal. Following Figure 1.7.3,

A

let M = (X,§,-,£,§,-) be any state-DEVS such that G(M) is also a SC of
G(M) and G(M”™) as follows,
a) G(ﬁ)::G(M) via a TC-DEIS state-isomorphism (i,h)
b) G() 3G(M”) via the TC-DEIS state-morphism
&R & (,Roc,h) = (1,hoh).
We show that G(M) 3G(M*) via the TC-DEIS state-morphism
(8%, h%) & (i,Ro(, )71 = (i,h* loh). |
Now, (é*,ﬁ*) is a TC-DEIS state-isomorphism as a composition of TC-DEIS
state-isomorphisms.
Suppose that
(1) h*(8,8) = (s*,0) eQ*.
Equivalently
(2) h*"1(f(s,8)) = (s*,0) €Q*.
Since G(M*) is a ESC of G(M) and G(M”) we have by definition that
(3) h*(s*,0) = (s,0) for some s €8S
or
(4) h**(s*,0) = (s”,0) for some s” €85~.
must hold.
Suppose that (3) holds. Then premultiply (2) by h*. For the left side
of (2) this gives
(5) h*(h*"1(A(5,8))) = hi(5,8)
while the right side of (2) becomes

(6) h*(s*,0).
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Equating (5) and (6) and applying (3) yields

(7) H(5,8) = h*(s*,0) = (s,0) €Q for some s€S.

But G(M) 3G(M) via (i,h) so that

(8) h(s,e) = (s,0) => &=0

Suppose that (4) holds. Then premultiply (2) by h**. For the left

side of (2) this gives

(9) h**(h*"1(R(5,€))) = h(h*(h*"1(A(5,8)))) =
h(h(5,8)) = h(5,8)

while the right side of (2) becomes

(10) h**(s*,0).

Equating (9) and (10) and applying (4) yields

(11) £i(5,8) = h**(s*,0) = (s",0) €Q” for some s’ €S~

But G(M) 2G(M”) via (g,h) so that

(12) h(s,8) = (s°,0) => & =0

We conclude from (8) and (12) that G(M)ZJG(M*) as required. 0

Corollary 1.7.1

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M”) and
M* 4 M(M’),then G(M*) is a MSC of G(M) and G(M”), since by Conclusion

1.7.2 G(M*) is a ESC of G(M) and G(M"). I=

Furthermore, the following theorem shows that M(M’) is canonical

in the following sense.

Theorem 1.7.3

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M~), and let

we & fomey.
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Then G(M*) is a unique MSC of G(M) and G(M”) up to a TM-DEIS state-

isomorphism.

Refer to Figure 1.7.3 assuming that M* 4 M(M~), and thét G(ﬁ) is
an arbitrary MSC of G(M) and G(M”).

Since G(M*) is a MSC of G(M) and G(M”) by Corollary 1.7.1, it
follows from Definition 1.7.4 that G(M) 3G(M*) via the TC-DEIS
state-isomorphism (é*,ﬁ*) & (i,h)o(i,h*) 1,

Since G(ﬂ) is a MSC of G(M) and G(M"), it follows from Definition
1.7.4 that G(M*)ZJG(ﬁ) via the TC-DEIS state-isomorphism
(88971 2 i,k @, R)7L.

Consequently, M* and M satisfy the conditions of Theorem 1.5.6,

from which it follows that G(M*) and G(ﬂ) are TM-DEIS state-

isomorphic.

Finally, we prove the following equivalence.

Theorem 1.7.4

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M"). Let
G(M*) be a SC of G(M) and G(M”) via a TC-DEIS state-isomorphism (i,h*)
and the TC-DEIS state-morphism (g**,h**) 2 (i,h*)o(g,h) respectiveiy.
Then

a) GM*) is a MSC of G(M) and G(M™)

iff

b) G(M*) is a ESC of G(M) and G(M").
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Proof

( =) Assume that G(M*) is a MSC of G(M) and G(M”).
Define M = ﬁ(M‘) to be the completion of M relative to M~.

By Theorem 1.7.3, G(M*) is TM-DEIS state-isomorphic to G(M). But

the latter is known to be a ESC of G(M) and G(M”) by Conclusion 1.7.2.

‘Furthermore, by Theorem 1.7.1 the ESC property is invariant under

TM-DEIS state-isomorphisms. Consequently G(M*) is an ESC of G(M) and

G(M7).

(&= ) Assume that G(M*) is a ESC of G(M) and GM™).

It immediately follows from Theorem 1.7.2 that G(M*) is a MSC of
G(M) and G(M"). ' ’ 0

Conclusion 1.7.3

Theorem 1.7.4 shows that the concepts of ESC and MSC are equiva-

lent.

Moreover, each of these concepts is equivalent to ﬁ(M’) up to

TM-DEIS state-isomorphism. |

Conclusion 1.7.3 asserts that ESC and MSC are two'equiValent

_ properties that characterize M 2 ﬁ(M‘). Thus G(ﬁ) is a canonical ESC

and MSC of any IM-DEIS state-morphic G(M) and G(M7), since all their
ESCs and MSCs are mutually TM-DEIS state—isdmorphic, and in particular
ﬁ(M‘) is one of fhem.

We can also think of G(M) as the representative of the set of all
ESCs or MSCs of G(M) and G(M”), whenever G(M) and G(M”) are IM-DEIS

morphic. This is se, because the IM-DEIS state-isomorphism relation is

clearly an equivalence relation.
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Finally, the concepts of ESC or MSC induce on the class of DEISs
a lattice-like structure in the sense that for each pair of IM-DEIS

morphic DEISs G(M) and G(M"), the DEIS G(M) provides a 1.u.b -like

concept.,

+1.u.b is an abbreviation for least upper bound.



CHAPTER 2

STOCHASTIC DISCRETE EVENT SYSTEMS

2.0 Introduction

The stochastic counterparts of deterministic discrete event
systems are stochastic jump processes. In a jump process, the system
evolves continuously in time and changes states discretely in time..
But while in the deterministic case the time spent in avstate and the
transition to a nekt state are deterministic functions, in the
stochastic case these are random variables obeying stochastic laws.

Our appréach would lead us from the deterministic case to the

stochastic one by adding a statistical-theoretic level on top of the

existing system-theoretic foundations. In the process we extend our

conceptual framework from deterministic systems to stochastic ones by

identifying the stochastic counterparts of the deterministic case
concepts, and by interpreting the statistical-theoretic objects from a

system-theoretic viewpoint. A general procedure that takes us from

the deterministic case to the stochastic one may be outlined for dis-

crete event systems as follows:

In Section 2.1 we start with a deterministic discrete event
system specified say at the state-DEVS level. More detailed sbecifica-
tions are also admissible provided they can be translated into the
state-DEVS level. Next, we render it stochastic by informally descriB-
ing its stochastic rules of operatioﬁ. |

In Section 2.2 we construct a formal probability space - the so-
called coordinate space - which we take to be the statistical represen-

tation of our stochastic discrete event system. A connection between

91
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the original state-DEVS which was our starting point, and the resulting
probability space is pointed out in Section 2.3. It involves system-
theoretic representation of the sample space of the coordinate space.
Each sample point is associated with a deterministic state-DEVS, from
which we derive at the DEMS level, a deterministic state trajectory that
models a particular sahple realization of the stochastic DEVS.

The merit of this representation stems from the fact that it yields
sample points which are considerably structured. Consequently, the
definition of random variables becomes natural and intuitive,. since it
reduces to choosing behavioral frames for each state-DEVS representing
a sample point. This is discussed in Section 2.4.

Moreover, relations among a variety of stochastic DEVSs become

more transparent at the sample space level. Such sample point relations

could induce Qtatistical relations among the corresponding c-algebras
and probability measures. When this happens, one may correctly deduce
properties of one stochastic DEVS from those of a related one, via
statistical morphisms. Later on we shall take advantage of such situa-
tions in a queuing network context, through the formal tool of stochas-
tic simplifications (of probability spaces),‘tp be described in the
next chapter, and by using the examples'of Sgction 2.5.

The discussion in this chapter assumes familiarity with the basic
concepts of Probability Theory. The reader is referred to standard
texts such as [D1], [F1], [F2], [H1], [L1] and [W1] for the relevant

background.



93

2.1 Informal Description of Stochastic DEVSs

A stochastic DEVS is a nondeterministic DEVS whose operation obeys
statistical laws. The stochastic aspects of operation will be later on
cast in terms of stochastic processes, while the deterministic ones
will be described from a system-theoretic standpoint.

We start with a deterministic state-DEVS M = (X,S,+,¢,8,+) and
tﬁe discrete event paradigm M-*>G(M)—*>SG(M) generated by it. (See
Ch. 1 Sec. 1.2). This paradigm gives rise to stochastic discrete evént
systems formulated as stochastic DEVSs, which we now proceed to describe
informally.

We think of a stochastic DEVS as starting its operation at time 0
from some stochastic full state (s,0) under some stochastic input
segment which is a stochastic composition of generators in Qx. AIt is
convenient to give an informal description of the operation of a
stochastic DEVS from a Simulation oriented standpoint.

a) When the system is in an initial state and whenever an external
event occurs, the next external event is scheduléd by a
stochastic choice of a generator in QX.

b) When the system is in an initial state (s,0) and whenever it
jumps to a new sequential state s, a time advance value €(s)
is sampled stochastically to determine the duration that the
system will remain in sequential state s.

c) Finally, whenever the system is about to jump to a new sequen-
tial state, a stochastic decision is made to determine this
new sequential state.

For the moment we can think of fhe stochastic decision makers ‘as

appropriately related random number generators. Mathematically, these
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would be random variables over the same underlying probability space
with prescribed joint distributions. These random variables play
analogous roles to the next generator in the m.l.s decomposition (see
Appendix A Sec. A.2) of an input segment, the time advance function &,
and the transition function § respectively. They also generate the
underlying probability space, so that all observations of a stochastic
DEVS become random functions over that space. We assume, however,
that the generating random variables are all real valued. This requires
all sequential states and all external events to be coded by real
numbers.

In the next section we shall map the underlying probability space
above into a probabilistically equivalent one, in a canonical manner.‘
The term '"'probabilistic equivélence" of probability spaces has here

the following meaning.

Definition 2.1.1

Let S = (Q,A,P) and S~ = (2”,A”,P”) be probability spaces. We
say that S and S” are (probabilistically) equivalent if there is a
bijective map h:A—=A~” such that

VAeA, P“(h(A)) = P(A). | 0

The aforesaid mapping procedure will yield a constructively speci-
fied probability space called the coordinate probability space. This
new probability space will constitute the formal statistical represen-
tation of our informal DEVS, or for that matter, of any stochastic
discrete event system, at any level of informal description. The

procedure is sufficiently general to be extended to general stochastic
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' g ?']) .
. . . 5 2
systems, so that the forthcoming discussion need ' . Stjc

Ay
stochastic discrete event ones.

In going from deterministic systems to stochastic ones, we shall

‘retain our original system-theoretic orientation. However, the

determiniétic case definitions will have to be modified for the stochas-
tic case, and recast in probabilistic terminology. We now outline how:
our underlying conceptual framework may be extended from deterministic
systems to encompass stochastic ones.

Stochastic systems model those systems whose governing laws are
"uncertain" to the modeler. This uncertainty results from fragmentary
knowledge which is insufficient to determine those rules. The missing
factors needed to account for the system's operation are aggregated as
"uncertainty", "randomness' or '"nondeterminism" and quantified as
probabilities.

In other situations, the laws governing the system's operation are
too complex to describe or compute, and a stochastic model is chosen to
describe a simplified version of the system at the cést of a certain
loss of information.

In any event, a stochastic system is formally represented by a
probébility space S = (Q,A,P) which captures its stochastic state
structure. The objects in S have the following interpretation:

1. The sample space Q is a set of outcomes. Each outcome w €Q
represents a particular deterministic sample history obtained
from some simulation run of the system. § stands for all
conceivable outcomes of such runs. Any specification of we;ﬂ
is admissible provided all specifi¢ations are mutually related

in a one-one manner. In many cases, w can be represented by a



. 4
determ :ys¥em or an appropriate state trajectory which
model the ;fstem history w, and Q@ thus becomes a set of
systems or state trajectories respectively.

2. The o-algebra A is a set of events (ensembles of outcomes) for
which probabilistic information is available. Since informa-
tion regarding stochastic systems is cast in probabilistic
terms, A describes the scope of such available information.

3. The probability measure P is a set function from A into [0,1]
which quantifies the uncertainty of events in A. P(E) is
interpretted as the chance that the ensemble of histories E,
will indeed occur.

Statements about behavioral aspects of stochastic systems are cast
in terms of events describable by random variables over S. The
probabilistic information embedded in A allows us to quantify the
uncertainty of such statements. In particular, observations of a
stochastic system in a certain behavioral frame emerge as stochastic
processes over S.

Finally, morphisms among stochastic systems become measure preser-
ving transformatibns between pairs of probability spaces. In the next
chapter, this approach would allow us to extend_the concept of system

simplification from the deterministic case to the stochastic one.

’ .
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2.2 The Coordinate Probability Space

The construction of the coordinate probability space is a standard

procedure in Probability Theory (cf. [CL1], [D1] and [W1]).
The starting point is a family of finite dimensional distributions

8 1

F={F 1,...,6n(y1""’yn): 8150--,0 €0 and n €N}

where © is some index set and N is the set of natural numbers,
We require F to satisfy two regularity conditions:
1) Consistency viz.

lim F ‘e = F
y_lbrnw 1,...,en_1,en(y1, ? n_l,yn) el,I.
n

and
2) Symmetry viz,

Fo ,...,0 (rgseeesyy) =Fg e, g seeesY; )
1 n

where (ei ,...,ei ) is an arbitrary permitation of (61,...,en).

1 n
In this case Kolmogorov showed (see [CL1] Sec. 3.3) that there is
a probability space S = (Q,A,P) and a stochastic process Y = {Ye}ee(D

over S such that for any 91,...,ene ® and any neN

,FY ...;Y (yl""’yn) = Fe yesesB (yl""’yn) )
1 en 1 n

Following [D1] we term a probability space S thus constructed - the
ecoordinate probability space‘induced By F.

In our case, the family of finite dimensional distributions F will
be given a priori semantics in terms of the informal stochastic DEVS of
the previous section. This would make the construction procedurebof

the coordinate probability space a rather intuitive one.
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For our case we require that © = {1,2,3,4}xN. We distinguish in
F the following types of distributions:

a) A sequence {F1 j};—l’ later on the distributions of the j-th
,j =

external event.

b) A sequence {F2 .} later on the distributions of the length

(2]
»373=1°
of the j-th time interval between the j-th and j+lst external

events.

c) A sequence {F3 j};—l’ later on the distributions of the j-th
,j7j=

sequential state into which the system evolves.

jl5=1°

d) A sequence {F4 . later on the distributions of the j-th
2 B

value of the time advance function.

We remark that the above interpretation reflects mostly modeling
situations where a distinction between the ''stochastic system'" and its
"stochastic environment' is essential. In many cases the 'stochastic
environment'" can be lumped into the state structure to yield an
"autonomous stochastic system'" thus eliminating distribution types
a) and b).

When a higher level description of a stochastic DEVS is given,
the semantics of the distribution functions in F should be assigned in
terms of the description employed. Indeed, when we particularize to
queues and queuing networks, the two comments above will be invoked.
However, the mathematical construction of the coordinate probability
space is free of any interpretations of F, and moreover, the procedure

we are about to describe is sufficiently general and representative to

serve as a prototype or guide lines for the class of stochastic discrete

event systems.
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We now proceed to describe in some detail the construction of the

coordinate probability space S = {(Q,A,P) of an informal stochastic DEVS.

I) Constrﬁction of the coordinate'sample space Q:

Intuitively, a sample point represents the outcome of a statisfical
""experiment'. In our case, the experiment is "simulating" an informal
stochastic DEVS,and the outcome is the resulting sample history ob-
tained by such a "simulation run". In order to capture the intuitive
content of the sample point concept, we define a sample point w eQ

_ ) Y
as a countable aggregate w = {wi,j i=1 j=1 where
o A ©
W, .Jf. = R
¢ 1,J}J=1 jii=1

[}

). .},
2,jj=1 ji=l

ne>
8

{w

© 4

{w, .}. . = .},
3,j7j=1 ij=

e

0g,57 521 = Wyyar -

Each of the sequences {aj}, {bj}, {cj} anQ {dj} is'a.real sequence
representing a certain realization compatible with the interpretafions
given in a), b), c¢) and d) respectiyely. Thus, {aj} represents a
particular sequence of external events to occur in a particular sample

history of our informal stochastic DEVS, and {bj} represenfs a particu-

lar sequence of inter-event intervals. Consequently, ({aj};{bj})

stands for a particular realization of the stochastic input segment;

graphically, ({aj},{bj}) defines some infinite pulse train starting at
the origin. In a similar manner ({cj},{dj}) represents a particular
trajectory of the sequential state; graphically, ({cj}’{dj}) defines

some infinite step function starting at the origin.
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Note that {aj}, {bj}, {cj} and {dj} jointly (i.e. the saﬁple
point w represented by the above) do indeed specify a sample history
that could conceivably be obtained from a trial run of é stochastic
DEVS. At this juncture we repeat our previous remark that in many
cases, the "stochastic input" is lumped into the '"stochastic state"
and the sample point w reduces to the aggregate ({cj};{dj}),i.e. to
specifications of autonomous sequential state trajectories.

We point out again that sample histories of a stochastic DEVS can
be specified at other levels, provided the input and state trajectories
are derivable from them. This point will be léter illustrated in a
queuing context. -

Generally, in order to qualify for a sample space of a stochastic
DEVS, Q@ has to consist of sample points w, each being a countable
aggregate of real numbers that is adequate to specify a particular

sample history.

II) Construction of the c-algebra A:

Let B be the Borel field on the real line MR, i.e. the minimal
o-algebra generated by'the intervals of R. Likewise, let B" be the
‘BoreZ field on the n-dimensional Euclidean space Rr".

A set CCQ is called a eylinder set if C has the form

.o o sW. L. see.,, . )EB
115317 15035 ,1n’Jn) :

C={weq: (w

for any neN and any B eB".
Consider the collection C of all cylinder sets in Q, and let o(C) be

the minimal o-algebra generated by C.
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II1) Construction of the probability measure P:

Recall that © = {1,2,3,4}xN. For any 61,...6 €0 let P
n 61,...,en

be the probability measure induced on " by the joint distribution

F in F. Since the map F f—=P is injective
B seens0 p TN I TSN N J

(see [W1] p. 7), it follows that F induces an equivalent family of

probability measures P = {P :0.,...,0_€0, neN}.
61,...,6n 1 n

Now, the cylinder sets in C constitute an algebra. Moreover, this
is the minimal algebra generated by the cylinder sets (see [W1] p. 7).
Define a probability measure u on the o-algébra o(C) as follows. Let
C=1{we: (w

s ) e B} be a cylinder set and take

il’jl,..

. A '
P,. . . . €P. Define u(C =;/;P .- S e
Gipdp)seeesGyi) ne RGN RN

Now, by Carathiodory's extension theorem, p can be extended from C to

i s
n’In

o(C) in a unique way (see [W1] p. 3).
Finally, let A 4 o(C) be the completion of o(C) with respect to yu,

and let P be the completed version of u.

Definition 2.2.1

The statistical representation of an informal stochastic DEVS is
the coordinate probability space S = (Q,A,P) induced by the informal
stochastic DEVS and whose construction is outlined in I), II) and III)

b .
above o
The term stochastic discrete event system will refer to any infor-

mal description of a system that is modellable as an informal stochastic

[
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DEVS, along with the coordinate probability space induced by it. A

further justification for this terminology is provided in the next

section.

2.3 System-Theoretic Representations of Coordinate Sample Points

Our next step is to make the system-theoretic aspécts of the
coordinate sample space moré direct and more explicit. To do this we
first associate with each weQ a state-DEVS M(w). Finally, we derive
from it an infinite state trajectory STRAJq,n that serves as a system-
theoretic representation of the sample queuing history w. The deriva-
tion follows the paradigm wk4>M(w)F4>G(M(w))P*>SG(M(N))F4>STRAqu,nw .
(See Ch. 1 for relevant background).

Let w = ({éj};{bj},{cj},{dj}) be any saﬁple point in Q. Define

the associated state-DEVS M(w) = <xw’sw’.’tw’6w’.> as follows:

>

{aj: j=1,2,...}

wn
1

A . .
= {(J,Cj): j=1,2,...}
3 :Sw—4>(0,m] is defined by

- A
tm(J’cj) - dj

$ :QwX(XwLJ{¢})-4>Sw is defined by

. A .
6w,¢(J,cj) - (J+1,cj+1)

and
. A .
aw,M(((J’cj),e)’ak) h (J+1scj+1)

Let n be the infinite input segment n 2 @ (a.) and let
w w  j=1%7j bj

q, 4 ((1,01),0). Following the aforesaid paradigm all the way to the
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DEMS level, it is then possible to define the infinite state trajectory

'STRAJ in ‘an obvious way. It is easy to see that the map

EHELUN

whe STRAJ is injective,and this fact enables us to replace the
w’ w

aggregate representation of w by the appropriate (infinite) state
trajectory STRAJ .
Ay Ny

Sometimes, it is more convenient to represent w €Q as a state-
DEVS by choosing M(w) to be an autonomous state-DEVS whose external
input is built into its state structure. To do this we define

M(w) = <Xw,Sw,-,tw,6w,-) as follows:

4

X 0

w

5, £ {m,a )} x(0,%]x{(n,c )}7_ x(0,=]
twtsw-4>(0,w] is defined by

' A .
tw((m,am),ra,(n,cn),rc) = m1n{ra,rc}
Gw:QwX{¢}-*>Sw is defined by
8 ((ma)r(nc)r)é
w,d *m’ 7 a’t " " n" ¢

((m + 1,am+1),bm+1,(n,cn),rc - ra), if ra < rc

((m,am),ra - rc,(n + 1’Cn+1)’dn+l)’ if T, <r,

((m + 1,am+1),bm+1,(n + l’cn+1)’dn+1)’ if r, =T,

The state trajectory representing w is STRAJ where
w’w

A A
q, = (l,cl) and n, = ¢ .

©o

In the sequel we shall interchange the aggregate representation,
the autonomous state-DEVS representation and the state trajectory repre-
sentation of w as the need arises. We are justified in doing so, because

all three representations are mutually related in a one-one manner.
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It should be born in mind that although these representations
describe time invariant systems in the system-theoretic sense, the
state process of the stochastic system as represented by the coordinate
probability space is not necessarily time invariant in the statistical
sense.

A system-theoretic representation of Q@ has additional advantages,
aside from making the system-theoretic aspects of stochastic systems

more transparent. In a statistical-theoretic analysis of such systems,

the major interest lies in some statistical state process of the system.

A standard approach would be to define the state space so as to render
the statistical state process a Markov process. The statistical state
would usually coincide with the system-theoretic state or with parts
thereof. Moreover, the Markov property would require in general that
the "state of the input" (i.e. recent input symbol and elapsed or
residual time) be part of the '"state process'" under consideration.
This fact further makes the autonomous state—DEVS and state trajectory
representations of we€ Q rather intuitive conceptualizations. It also
allows us to classify stochastic DEVSs from a system-theoretic view-

point as follows.

Definition 2.3.1

Let S = {(Q,A,P) be the statistical repfesentation of a stochastic
DEVS, and let M(w) be the autonomous state-DEVS representation of we€ Q.
Then

a) the stochastic DEVS is legitimate if the set

{weQ: M(w) is not a legitimate state-DEVS} is a null set,

i.e. almost all M(w) are legitimate state-DEVSs.
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b) the stochastic DEVS is regular if the set
{weQ: M(w) is not a regular state-DEVS} is a null set,

i.e. almost all M(w) are regular state-DEVSs. O

Naturally, we require a stochastic DEVS to be at least legitimafe,
in order that sample histories be well defined.

Another line of classification is suggested by the intuitive
concept of multiple scheduling. Suppose thevuser_partitions DEVS
jumps into "types' which are attributable to various ''types' of system-
theoretic events. A multiple scheduling relative to thé‘underlying
partition takés place when a jump is attribﬁted to the simultaneous
occurrence of more than one system-theoretic event. Let us define the
event multiplicity of a deterministic DEVS as the largest number of
system-theoretic eveﬁt "types' involved in any jump. Then the event
multiplicity of a stochastic DEVS is defined as the smallest integer n
such thaf the set {we€Q: M(w) has event multiplicity lafger than n}
is a null set.

We remark in passing that most queuing systems are modellable by
stochastic DEVSs which are regular and whose event multiplicity is»l

relative to the natural partitioning of transitions into arrival and

‘service completion "types".
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2.4 Random Variables over a Coordinate Probability Space

We discern two main classes of random variables over a coordinate
probability space S = (Q,A,P) representing a stochastic DEVS. The
first class consists of random variables, that generate A. The second
class consists of all stochastic processes over S and is identified
with the set of‘all behavioral frames of the underlying stochastic
discrete event system.

The generating random variables are formally defined as projection

functions on Q as follows.

Definition 2.4.1

L o

Let G = {g. }i=1 j=1

i, be an aggregate of functions over a
)
coordinate probability space S = (Q,A,P).

Let each g; j:Q--¢>lR.be defined by
b

L 0
= € =
Vw {wi,j}i=1 j=1 Q, gi,j(w) w5

Then G is called the (statistical) generator set of S. O

This terminology is justified by the fact that the c-algebra o (G)
generated by G is precisely the one generated by the cylinder sets C.
In other words A = o{G}. (See [W1] p. 39.)

Consequently, the generator set G has a family of finite dimension-
al distributions which is precisely the one prescribed by F in Sec.
2.2, viz,

F

=F.. . . .
g -9 (115390505 (p53)

. s g
11231 n*In
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Indeed, the interpretation of the generator set G is compatible with
the interpretation of the joint distributions in F as given in a),

b), ¢) and d) of Sec. 2.2. That is,

a) g T j =1,2,... is the random variable of the j-th external
event.
b) g, j? j =1,2,... is the random variable of the j-th inter-
3

event time interval.
c) gz 3 j=1,2,... is the random variable of the j-th sequen-
3
tial state into which the system evolves.

d) = 1,2,... is the random variable of the time advance

84,57 j
assigned to the j-th sequential state.
To sum up; the coordinate probability space was constructed according
to Kolmogorovfs theorem so as to ensure that G generates it and has F
as its family of finite dimensional distributions.

The second class of random variables over S consists of statis-

tical observations pertaining to a certain behavioral aspect of our

stochastic discrete event system.

Definition 2.4.2

Let S = (Q,A,P) be a coordinate probability space representing

some stochastic DEVS. Let ¥ = {Y_ } be a stochastic process over S.

0°0€e0
Finally, let S, = (Q,AV,PV> be the probability space induced by ¥ in S

where

Ay B o(faeA: A=Y 1(B), 6 co, BeB)) and P, 2 P[A, .

Then Y is called a behavioral frame of S, and Sy is called the

probabilistic frame induced by Y on S.
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Definition 2.4.3
Let ¥ = {Ye}eee and ¥° = {Ye}eeo be two behavioral frames over

S =(Q,A,P) and $” = (Q°,A",P”) respectively, with the same index set
©. Then (Y,Y”) is called a behavioral pair of S and S”. We say that
Y and Y~ are distribution equivalent if they have the same family

F, = F

y y~-

Clearly, if (Y,Y”) is a distribution equivalent behavioral pair,

then the probabilistic frames Sy and Sy, induced by them are probabilis-

tically equivalent up to null sets in the sense of Definition 2.1.1.
Notice how the above definitions fit into our conceptual frame-
work. As stated before, the totality of information carried by a
stochastic system is embedded in the probability space representing it.
By the same token, a behavioral frame should focus on a certain behav-
ioral aspect by reducing that totality of information to the relevant
part. Indeed, the o-algebra Ay coarsens the underlying c-algebra A,
as AVC:A. The desired effect is achieved because in Sy we are left
with a less extensive oc-algebra which can give us probabilistic
information concerning only the stochastic observations of interest.
The most important behavioral frames are the "full state" process
and the '"sequential state'" process. Whenever they are measurable,
they define continuous parameter stochastic processes whose parameter
is interpreted as time. Most behavioral frames of interest would be
functions of the stochastic state, much as in the deterministic case.
The behavioral frame "initial state of the system" ié especially
important when a stochastic DEVS is specified through a stochastic

transition structure. In this case, the "initial state" random

of finite dimensional distributions. . 0

| am W
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variable is essential in specifying a sample history, while subsequent
states are not, and can be removed from the generator set. This
situation is typical of queuing systems as will be seen later.

The definition of functions over Q becomes especially intuitive
when the state trajectory representation or the autonomous state-DEVS
representation of Q are used. Such definitions involve a conceptual
"simulation run" of M(w) and observation of a pérticular aspect of
the trajectories generated by it.
| The problems of measurability of such functions (i.e. showing
them to be random variables 6ver S) are basically unchanged. When the
problem arises, a typical technique amounts to showing that the pros-
pective sample ébace functions can be obtained from the generating ran-
dom variables via '"'measurable' operations. Loosely speaking, one must
show that the "simulation" and '"observation" operations, alluded to
above, preservé the measurability of the generator set elements which
are used in the process.

We point out that the scope of behavioral frames, definable on Q,
depends crucially on the representation chosen for Q. While the
aggregate representation contains maximum information, an alternative
representation may incur a loss of information. For example, in
queuing context, if M(w) is a state-DEVS representation of w whose
sequential states keep track of queue length rather than of queue
configuration, then behaviorallframes concerning individual customers
(e.g. waiting times) cannot be described, as the necessary information
is lost in the course of the mapping wF+=M(w). In order to recover
such behavioral frames, we need a more elaborate state-DEVS model that

keeps track of queue configuration and consequently of individual

o
i
-
on
(24}
[yl
o
s
P
re

=
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customers. Indeed, customer oriented behavioral frames are statis-
tically harder to compute, a fact which has an obvious system-
theoretic explanation in view of the increased complexity of the
generic M(w) required for the task. These points will be revisited
and demonstrated in the examples of the next section and in Chapter 5.
We conclude this section by providing a standard reference frame

for the class of behavioral frames.

Definition 2.4.4

Let S = (Q,A,P) be a coordinate probability space representing
a stochastic DEVS. Let Sy = (Q,AV,PV) be the probabilistic frame
induced on S by a behavioral frame Y = {Ye}eee

For any finite subset L = {il""’i|L|}ee de:["ine1L

B (L) =(m|L|,B|L|,pL) where P (B) £ P({uea: v, (w),...,Yi’(m?)eB})
1 L

for any BeBlLl. Then the collection B(Y) = {B(L): LCO is a

finite subset} is called the Borel frame induced by Y. O

The concept of a Borel frame merely maps the probabilistic frames
induced by each finite subset of.random variables in V; into equivalent
frames whose sample space is always Euclidean and its o-algebra is
always the Borel one. Instead of dealing with a variety of sample
spaces and o-algebras of probabilistic frames, we can now deal with
their standard counterparts. Thus, the problem of showiﬁg a behavioral
pair (Y,Y”) with index set é to be distribution equivalent, feduces to

one of showing that the P, and Pi measures in the correspending B(L)

L

and B“(L) are identical measures, for any finite LCO.

+|L! is the cardinality of L.

B R N m N aE AR B N EBn O EE
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2.5 Queuing-Theoretic Examples

In this section we illustrate the construction of the coordinate

probability space associated with various queuing systems;

Example 2.5.1 (Single queue)

A) Informal description:

Consider a queuing system composed of one service station with
one server in it. Customers arrive randomly and joih a waiting line
if necessary. The service time given to each customer is of random
duration. The line discipline ié FIFO (fifst in first'out) and the
line itself has infinite capacity.

The j-th inter-arrival time interval is a random variable Aj with

distribution function FA and the service time given to the j-th

J

customer is a random variable Sj with distribution_function F The

S.”
J

initial line length is a random variable L0 with distribution function

FL . In addition, assume that there is given a family F of finite
0

dimensional distributions of the random variables {Aj};=1’ ;=1

and LO which is consistent and symmetric.
B) The coordinate probability space:

To. determine a sample queuing history we need to know an initial
line length of the system, a particular4sequence of inter-arrival time
intervals, and a particular sequence of serQice times given to the
customers. Consequently, a sample point weQ is aﬁ aggfegate
P

w={o, ;}2 (,{a)

,{s.}? where
i,j 373=1""73 J=1)

0o _ .
0. {wO,j}j=0 = KO is an initial line leggth.
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1. {

w, Yo . = {ai}? . is a sample sequence of inter-arrival
1,j73=1 = *%375=1 phe seq
time intervals,
2. fw. .15 . =1{s.}. . is a sample sequence of servicé times
2,37j=1 jli=1 P 4

given to the customers.

Next we take o(C) i.e. the minimal o-algebra generated by all cylinder

sets of Q. The family F of finite dimensional distributions is used
to define a measure P oni ¢(C) as in III) of Sec. 2.2. Finally, o¢(C)
is completed with réspect to P to yield o(C) and P is extended
appropriately from o(C) to o(C). fThis completes the construction of
the coordinate probability space S associated with the informal
description in part A).
C) The generator set:

Thé generator set G of S is G = {LO,{Aj},{Sj}: j=1,2,...} where
the elements of G are redefined on S as the appropriate coordifate

(projection) functions as follows.

] L]
.

Let w = {wi,j} = ({KO,{aj}J=1,{sj}j=1) be any sample point in Q.
Then

0. Ly(w) 2 £,

1A ) A 2,

2. ;) C s

The random variables in G retain their interpretations as givén in
the informal description of part A).
D) System-theoretic representations of Q:

Two representations of Q via state-DEVSs will be exemplified.

j=1’

(o]
.

Let & = (20,{aj} J=1)

{s.}
J
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D.1) Define a state-DEVS M(w) = (X ,S ., ,6 ,*) by

A
X, = {1}

ne

S

" {(0,n,»): neN}U{(L,n,r): £ > 0,neN,0 < r < sn}

tw(Z,n,r) A

1
H

O,n + 1,0), if L =1

ne>

Gw ¢(K,n,r)
’ (£ -1,n + 1,sn+1), if £>1

(l,n,sn), ifL=0

Gw,M(((K,n,r),e],x)
£+ 1l,n,r-¢), ifL>0

For double scheduling any composition-type rule is applicable.
This happens when an exogenous arrival and a service completion
occur simultaneously. The state trajectory representation for

w is STRAJ such that
ww

q, = (50,0) where

(0,1,»), if £, = 0

ne>

A o)
and Ny = jglla.

. J
(20,1,51), if ZO >0

D.2) Define an autonomous state-DEVS M(w) = <Xw;Sw,-,tw,6w,-) by

x 2o
w

ne>

S

N {(0,(m:ra),(n’m))1IHJIGN,O ST, < am} V]

{(Z,(m,ra),(n,r )): £,m,neN,0 < T, <a,0< rs < sn}

>

€, (m,r ), (n,r ) min{r_,r_}
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A
(Sw,cb(‘e: (m:ra) ’ (n’rs)),, =
( .
(1,(m + 1,am+1),(n,sn)), if T, < T and £ =0
(£ + 1,(m + 1,am+l),(n,rS - ra)), if T, < T, and £ > 0
4(0,(m,ra - rs),(n + 1,0)), if ro<T, and £ =1

“ - 1,(m,ra - rs),(n + l,sn+1)), if ro<T, and £ > 1

(£, (m+ l,a  ),(n+ 1,5 .)), if r =1

\

Notice, that in the autonomous state-DEVS representation, the case

T, =T corresponds to double scheduling of events in the state-DEVS

representation D.1).

The state trajectory representation of w is STRAJq such that
ol
q, = (sO,O) where
(0,(1,a2,),(1,)), if £, = 0
1 0
s, & ‘ and £ ¢
0 Ny = %o -

(£ys (1,2)),(1,5)), if £ > 0

Following the discussion in the previous section, we see that the
state-DEVS representations D.1) and D.2) for Q precludes customer-
oriented behavioral frames, since M(w) does not keep track of line
configuration and consequently of individual customer identity. In
order to attain such behavioral frames, M(w) should be redefined so as
to preserve that information.

This comment is also pertinent to the following two examples.

Example 2.5.2 (Single queue with feedback)

A) Informal Description:

Consider a queuing system composed of one service station with
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one server in it, and waiting line conventions as in Example 2.5.1.
Customers arrive at the system randomly, and after service is éompleted,
they instantaneously invoke a random desision maker which we call a
decomposition switch. The switch has two readings coded by 0 and 1.
If the switch indicates 0, the customer leaves the system altogether.
If, however, it indicates 1, the customer is instantaneously fed back
to the tail of the line to obtain another service in due time. The
inter-arrival times of exogenous customers, the service times and the
initial line length are random variables with distribution fupctions
as in the previous example. In addition, the j-th switch reading

(at the time of the j-th service coﬁpletion) is a random variable Vj

with distribution function FV . Again, assume that an appropriate

J
family F of finite dimensional distributions is given.
B) The coordinate probability space:

To determine a sample queuing history, we need to know an ihitial
line lengfh, a particular sequence of inter-arrival times of exogenous
customers, a particular sequence of service times given to customers
and a particular sequence of switch readings eﬁcountered by the

customers.

Consequently, a sample point weQ is an aggregate

A [+ o0 [+
= . .} = (L.,{a.}. s.}. v.}. here
o= og 53 = (pelaglyogasylyny Uvgdyn)) wher
o _ . e s .
0. {wo,j}j=0 KO is an initial line length,
1. .}? = a.}? is a sample sequence of inter-arrival
tog 515=1 = 185154 pe seq *

times of exogenous customers.

2. {w. .}° . =1{s.}. ., is a sample sequence of service times
2,j%5=1 = 5551 P 4

given to customers.
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5,505=1 = 15 ;=1 is a sample sequence of switch readings
encountered by customers.
The coordinate probability space S is constructed analogously io
part B) in Example 2.5.1.
C) The generator set: N

The generator set is G = {L ,{A.}? ,{S.}? ,{V.}? }
& 0°*"373=12"573=1"" 137521

and its elements are redefined on © as the obvious projection functions
with the obvious interpretations.

D) System-theoretic representations of Q:

o] (-]

{s.} {v };=1)GK2 and define a sequence

Let w = (£,,{a. s . .1V,
o J}J=1 373=1"""3

of random variables {Zj}§=1 almost everywhere on Q by

O,ifj=0
zj(w) 4 min{k: k > Zj_l(w) and V, (w) = 0}, if j > 0 and the
minimum exists

undefined, otherwise

Zj(w) is the index of the j-th O in {Vj(w)};=1, i.e. in an infinite

sequence of Bernoulli trials.

Let M(w) = (xw,sw,-,ew,aw,-) be a state-DEVS given by

ne>

X
w

{1}

S {(0,n,v_,®): n = Zj_l(w)+1,jeN}LJ{(Z,n,vn,r): £,meN,0 £ T < sn}

w n
A
tw(ﬂ,n,vn,r) =7
(‘
(0,n + 1,vn+1,w), if £ =1 and v, =0
A .
Gm,¢(£,n,vn,r) = 4 £ -1,n + 1,vn+1,sn+1), if £ > 1 and v, = 0

\(ﬂ,n + 1’Vn+1’sn+1)’ if v, = 1
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A (l,n,vn,sn), iff£=20
6m’M(((£,n:Vn:r);e)sl) =
(L + l,n,vn,r -e), ifL>0

The tie-breaking rule for double scheduling is of the composition

type. The state-trajectory representation of w is STRAJq 'n such that

3

w W
q, = (50,0) where
A (0,1,v1,m), if ﬂo =0 A e
50 = and nm = jglla .
. : . j
(Ko,l,vl,sl), if KO >0

i : O

i

Example 2.5.3 (Queuing network)

A) Informal description:

Consider a queuing system composed of m service stations labeled
1,2,...,m each housing a single server, and an infinite capacity
waiting line with FIFO discipline. The initial line length at service
station i is a random variable Li 0 with distribution function FL .

s i;o
Each service station can have a random input stream of customers from
an exogenous source. The j-th inter-arrival time interval to service
station i is a random variable Ai . with distribution function FA .
] i,j
Customers are served at the service stations for random time periods.

The j-th service time given in service station i is a random variable

Si 3 with distribution function FS .
] . .
1,]

customer enters a decomposition switch and a random decision is made

When service is done, each

regarding the next destination (switching) of that customer. The

j-th switching decision at service station i is a discrete random

variable Vi ; with distribution function Fv . Each Vi j can assume
] s 4 3
1,}
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a switching value from the set {0,1,...,m} where a value 0 means that
the customer leaves the system altogether and all other values stand
for service stations in the system. The topology of a queuing nef—
work may be described by a directed graph whose nodes represent
service stations and whose arcs stand for permissible flow paths
(switchings) of customers. It is often convenient to add to such a
graph a fictitious node 0 which represents the "environment'. The
"environment" can be viewed both as the source of all exogenous
éustomer streams as well as the sink of all customer streams that
leave the system altogether.

In the sequel we shall often discuss the network in terms of its
associated graph. As a matter of fact, we use the terms "nddes" and
"service stations'" interchangeably, and similarly for the terms ''arcs"
and "switching decisions".

As usual we assume that there is given a consistent and symmetric
family F of finite dimensional distributions for the random Variables

L A. ., S . and Vi . above.

i,0° "1,j i,j s
B) The coordinate probability space:

To determine a sample queuing history we need to know an initial
line length at each node, a particular sequence of exogenous inter-
arrival time intervals at each node, a particular sequence of service

times awarded at each node and a particular sequence of switching

decisions made at the decomposition switch of each node. Consequently,

a sample point weQ is an aggregate

.

}j=1’ i

A © © .
R N R R EOAE = bZeem

where for every i = 1,2,...,m
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0. {mo,i,j}j=1 = Ei,O is an initial line length at service
station 1i.
1.4 Yo . = {a, Yo, i 1 £ int
o oy . .}, , = {a, .}._ , is a sample sequence of inter-
1,i,j%5=1 " *%,j75=1 pie sed

arrival times of exogenous customers at service station i.

co

- A
2. WA . ). = {s. .}. is a sample sequence of service times
tog,1,5%5=1 7 155,3%521 P 4 -

given to customers in service station i.

[} o«

W, « . 4 = {v. .}. is a sample sequence of switching
3,1,5%3=1 = Vi,515=1 ple seq switching

3. {
decisions made at the decomposition switch of service station
i.
The coordinate probability space is now constructed analogously to

part B) of Example 2.5.1.

C) The generator set:

1,j15=1184 5 5= V3 5yt 1= 120e0om)

6= {{L, ,},1A Tt

0

is the generator set and its elements are redefined on Q as the obvious

 projection functions, with the obvious interpretations.

D) System-theoretic representation of Q:
A natural way of representing w€Q as a DEVN is as follows.

{ } {v

00 [+ -]

Let w = (14; j=1°153 51521

o .
}j=1’ i=1,2,...m)

,000125 i,]

be a sample point, and define a sequence {Zi j};—l’ 1<ixgm, of
_ ,j7 5=
random variables almost everywhere on Q by
(0, if j=0
min{k: k > Zi,j—l(w) and Vi,k(w) # i}, if j > 0 and the

i . . .
s3 minimum exists

K_undefined, otherwise

[t
o4
-
i
[
s
(22
ey

T

rm

=
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{Za,B}a €D 13,

BGIG

I}

ueD’ aaeD’ > be the

Let N(w) = {D,{M (u)} a’a €D

DEVN associated with w. N(w) is defined as follows:
g {1,2,...,m}
For 1 £ o < m, Ia £ {nodes B8: there is an arc («,B) in the

associated graph}

For 1 sa<m, M () = (xa o a o’ -,ca’w,sa,m,-) is a state-DEVS
given by
4 .
xa’w 2 {loc,B' Bel and B # al}U{la}
A ©)e 1 = .
Sa,w = {(O,n,va,n, ):n = Za,j—l(w) +1,j€N}U

{(li,n,va,n,r) £,neN,0 <1 <s n}

,

e

A
t ’m(ﬂ,n,va’n,r) =

u " ¢(£ n,v ,n,r)

(0,n + l,va’n+1,w), if £ =1 and Vo # a

s

£-1,n+1,v , if £ > 1 and v n # a

s )
a,n+l’"a,n+l o,

(£,n + 1,va n+1°5q, n+l), if Von = ®

"
<

A (l,n,va 0’5y n)’ if £
d. w, M(((‘e n, V o,n ,r),e),x) =
£ + 1,n,vu’n,r -e), ifL >0

A IB,a’ if Va,n =B #a

undefined, otherwise



‘For 1 <a <m, J <2 “’@-4>sa , is defined by

Ja,w((('e,nsva,n)r) se) ’EU.) -

o=
=

[}

Tt
m
]
e
or
o

rr

)

aa,m,¢(£ + IEaI - l,n,ya’n,r), if ¢,€E,

80,0, m(((+ [E| - Ln,v, 1o7),00,%), if ¢,$E, and E_# 0
(Z,n,va,n,r - e), if E =0

Finally, we expand the DEVN N(w) into the state-DEVS MN(m)

associated with it (see Ch. 1, Sec,kl.l) and we derive the DEMS

S ee Ch. 1, Sec. 1.2).
M (w) )
The state trajectory representation of w is STRAJ such that
w’ :
q, = (50,0) where

Sy = (51,0""’Sm,0) is defined by

(0,1,v, 1), if Ka,o =0

ne

for 1 sa<m
0,0 .

(ta,O’l’Va,l’sa,l)’ if Ka,o >0

' -] [ )
and n = (,0,1 ,.0.1 P 3 | )
=1 .?29=1 . =1"a .
R s U B 3 I=



CHAPTER 3

STOCHASTIC MORPHISMS AND SIMPLIFICATIONS

3.0 Introduction

In Chapter 2, a conceptual framework for stochastic discrete
event systems was set forth. In particular, Chapter 2 exemplified
how a stochastic discrete event system may be canonically represented
in coordinate probability space.

In this chapter, we extend this underlying conceptual framework
to relations among stochastic systems in probability space represen-
tati;n. In accordance with Appendix B, these relations will be
collectively referred to as stochastic morphisms; these will give rise
to stochastic simplifications. Formally, stochastic morphisms are
described as measure preserving relations between probability spaces.
Such relations are employed, for example, in [Col] in a modeling
context. Since the treatment in this chapter is at the probability
space level, the extension alluded to above goes beyond stochastic
systems, as interpretations of probability spaces are not restricted
to stochastic systems in the sense of Chapter 2.

The organization of this chapter is as follows.

Section 3.1 introduces a class of stochastic morphisms of the
measﬁre preserving transformation type (cf. [D1] Ch. X and [H1]}

Ch. VIII), - the so-called measure preserving point morphisms.

Section 3.2 fits stochastic simplifications into the broader
conceptual framework of Appendix B. This section treafs the so-called

point simplifications, brought about by measure preserving morphisms.

122
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In addition, Theorems 3.1.1 and 3.2.1 provide sufficient
conditions that establish a point simplification and guarantee it

to preserve the probability law of behavioral frames. These theorems

supply a basis for reducing the problem of ''stochastic" preServation'

of stochastic processes to that of "deterministic'" preservation of

their sample functions.

Finally, Section 3.3 discusses the effect exerted by point
simplifications on behavioral frames.

As in the previous chapter, the discussion in this chapter
assumes familiarity with the basic concepts of‘Probability Theory.
The reader is referred to standard texté such as [D1], [F1], [F2],

[H1], [tl] and [W1] for the relevant background.

3.1 Stochastic Morphisms

Throughout this chapter we shall always assume, without loss of
generality, that all probability spaces under consideration are

complete.

The following definition isolates a class of stochastic morphisms.

Definition 3.1.1

Let S = (Q,A,P) and 8~ = (Q‘,A’,P;) be probability spaces.
Let H:Q-+=Q” be a surjective point mapping satisfying:
a) VE“eA”, HI(E")eA
i.e. preservation of events .
b) VE“eA”, P7(E”) = P(H 1(E"))

i.e. preservation of measure .
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Then H is called a measure preserving point morphism (abbreviated

m.p.p.m), or simply a point morphism from S to S-. 0

Measure preserving point morphisms are variants of measure
preserving point transformations (cf. [D1] p. 453 and Sec. 3 of
Supplement; [H1] Ch. VIII). Observe the simplification effect
implicit in this class of stochastic morphisms (see Appendix B for a
formal discussion of the simplification concept). A complexity
reduction is-achieved at two levels. At the sample space level, H lumps
sample points, due to the fact that H is surjective but not necessarily
injective. At the o-algebra level, H }(A”) is a sub-o-algebra of A
by a) in Definition 3.1.1, so that the original event information in
A may be reduced. The preservation effect is described by condition

b) as a measure preserving effect.

Note also that conditions a) and b) of Definition 3.1.1 do not
generally hold in the other direction. For one thing if E€A then
the m.p.p.m definition does not guarantee that H(E) € A”. Even so, a
probability preservation relation P(E) = P“(H(E)) does not necessarily
follow, due to the inclusion ECH l(H(E)). To illustrate this point

consider

Example 3.1.1

Take 0 & [0,2], @7 4 [0,1], and let A and A” be their respeétive

Lebesque measurable sets.

A 0, if Ec[0,1]
Define P(E) =

Lebesque measure of E, otherwise
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and define P” to be the Lebesque measure. Finally define a m.p.p.m
H:[0,2]—=[0,1] by H(w) 2 w mod 1,

Take N = [0,1]. Then, P(N) = 0,but P*(H(N)) = P"([0,1]) = 1. L

The following definition gives a standard hierarchy of point

morphisms.

Definition 3.1.2

Let H be a m.p.p.m from S = (Q,A,P) to S” =(Q°,A",P") .

a) If H1(A”) = A, then H is called a measure preserving point
homomorphism (abbreviated m.p.p.h), or simply a point
homomorphism from S to S~°.

b) If in addition H is bijective, then H is called a measure

preserving point isomorphism (abbreviated m.p.p.i), or simply

a point isomorphism from S to S~°. , (o]

A simple instance of a measure preserving point morphism is a

real random variable with a Borel measurable range.

Example 3.1,2

Let Y be a (real) random variable over a probability space
S = (Q,A,P), such thét the range of Y is Borel measurable. Define a
probability space S~ = (Q’,A’,P’)'where

o- 2 vy

A” is the Borel field over Q-

P)

i

PY is the probability measure induced on A” by the disfribu-

tion of Y.
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Define H:Q—=Q" by H 2 Y. H is surjective by definition of Q~.
Moreover,
a) VE“eA”, H1(E") = {w: Y(w) eE“}eA

b) VE"e A’, P(E”) = P, (E") = Plu: Y(w) €E"} = P(H I(E")).

We conclude that Y is a m.p.p.m from S to $*. . 0

Two more examples of point morphisms follow.

Example 3.1.3

Let S = (Q,A,P) be a probability space and let A be a sub-o-algebra
of A, Take S$” = (Q",A”,P”) where Q~ £ Q, A” E X and p- & P|A.
Finally, H:Q—=Q”, defined as the identity function is a m.p.p.m

from S to S-. 8|

Example 3.1.4

Let Sl = <91’A1’P1> and 32 = (QZ,AZ,PZ) be pfobability spaces.
Let S = (Q,A,P) be the product space of Sl and Sz, i.e. Q 4 Q%85
A is the minimal o-algebra generated by AIXAz,and P is the product
measure. Finally take S~ £ Sl' Define H:Q—=Q” to be the projection
function H(ml,wz) 4 wy . Then H is a surjective map satisfying:

a) VE“eA”, H1(E") = E“xQ, ¢ A

b) VE“eA”’, P*(E”) = P, (E1)P,(2,) = P(E"xR)) = P(H 1(EN)).

Hence, H is a m.p.p.m from S to Sl‘ O

The following theorem characterizes the class of measure

preserving point morphisms.
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Theorem 3.1.1

Let S = (Q,A,P) and S° = (Q",A",P”) be probability spaces and

let H:Q—=Q” be a surjective map.

Then H is a m.p.p.m from S to S” <ff there are stochastic

processes ¥ = {Y_} and ¥Y° = {Y } over S and S” respectively,

0" 6€0 0°0€0
such that

a) Y~ generates A” up to completion.
b) VY and Y~ are distribution equivalent.
c) For every 6 €0, there is a null set Nee A such that

(c.]) VoEN,, Yo (u) = Y7 (H(w)).

Proof

(<=) Assume that there are Y and Y~ satisfying conditions

a) - c¢). Fix any finite L £ {91,...,9n}ce and any BGB!L| = 8%,

where |L| = n is the cardinality of L. Consider the sets
) E 2 {u: (Yg (0),...,Y, ()) B} €A
1 n
) B L {w (Y (@7),...,Y; (7)) e B} e A”
1 n

and the Borel spacés

3) e 4 (lR'L',BlLl,PL>

@ sy A(rILEIM ey

Since Y and Y~ are distribution equivalent, it follows from Definition

2.4.4 that
(5) | PL = PL
In particular, it follows from (5) that

(6) P(E) = P, (B) = P/(B) = P"(E").
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Next, let N be the collection of all null sets in A. Then clearly

7 N 2 U NgeN

L geL
Furthermore, in view of (c.1), (1), (2) and (7)
(8) H-I(E’)-NLCECH_I(E‘) N -
Since A is complete we can conclude from (8) that there is a null set

NC NL such that

(9) H (") = EpNeA
whence, due to (6),
(10) PH !(E")) = P(E) = P"(E").

As L ranges over all finite subsets of © and B ranges over all
events in B‘LI, the resulting sets E“ in (2) range over the minimal
algebra a(Y”) generated by Y“. Thus, from (9) and (10) we conclude
that conditions a) and b) of Definition 3.1.2 hold for any event
E*e a(V7).

A standard application of the Caratheodory Theorem (see [L1]

p. 87) extends the validity of (9) and (10) from the minimal algebra
a(¥Y") to the minimal o-algebra o(Y~”) generated by ¥Y~“. It then readily
follows that (9) and (10) are also true for every E” in the_completion
o(Y") = A. Hence H is a m.p.p.m from S to S”.

(=) Assume that H is a m.p.p.m from S to S”.

& }

Define 0 2 A-, Y7 = {I and Y & {IH— where Iy

E“'E‘ecA” l(E‘)}E’eA‘

is the indicator function of the set A. It follows that Y and Y~ thus

defined trivially satisfy conditions a) - c).
a
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3.2 Stochastic Simplifications

Stochastic simplifications are defined via stochastic morphisms
whose simplificational effect is discussed in the preceeding section

and in Appendix B. For measure preserving point morphisms we make

Definition 3.2.1

Let S = {(Q,A,P) and $” = (2°,A”,P”) be probability spaces.
We say that the ordered pair (S8,S°) is a simplification pair,if there
is a m.p.p.m H running from S to S”. In this case we write

sHbg- and refer to it as a (stochastic) point simplification.

- In this context, S will be termed the base space, and S” the lumped

space of the point simplification Skﬂ>S’. ‘ v O

We note in passing that the point simplification relation among
probability'spaces.is transitive.

The complexity reduction effect of a point simplification
is that of lumping, since the map H and the set transformation h
induced by H may be thought of as coarsehing the base space's
sample space and o-aigebra respectively.

The preservation effect of a stochastic simplificétion SF*>Sf
on a behavioral pair (Y,Y”) should naturally be a statistical one.
The most important preservation notion from an analytical standpoint
is that of distribution equivalenée of ¥ and Y. This situation
will be referred to as‘preservation in distribution.

Weaker notions of preservation include preservation of one

dimensional distributions, preservation of means and of higher moments

o
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of the respective random variables in Y and V .

For preservation in distribution we have the following sufficient

condition.

Theorem 3.2.1

Let sHbg- be a point simplification where S = (Q,A,P) and
S =«(",A",P"), Let VY = {Ye}eee and Y~ = {Ye}eee be stochastic
processes over S and S” respectively. Suppose that the m.p.p.m
H satisfies

a) for every 6 €0 there is a null set NeeA such that

(8.D) VukNg, Y (w) = Yo(H(w).

Then Y and Y~ are distribution equivalent.

Proof

Take any finite L £ {el,...,en}ce and any B eB". Define

NL 4 9 Ne; then N. is a null set of A. Consider the events
feL L |
M B8 fur (Y (w),...,Y () eBleA,

1 n
2) E- 2w (Y7 (@) se.0 Y5 @) e BY € A”,
1 n

It follows from (1), (2) and a) that

(3) H! (E*)-N, CEC H 1(E/)V N

From (3) we conclude that there is a null set NeA such that
(4) E = HIE)IDGN .

But sirce H is a m.p.p.m, (4) implies

(5) P(E) = P(H Y (EDHDBN) = PH I(E?)) = P (E").

o - . ~
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Consequently, the Borel spaces B(L) 4 (mJLI,BILI,PL) and
8 (L) é(m'LI,BILl,Pi)(see Definition 2.4.4) satisfy

(6) PL = Pi for any finite LcCO.

whence ¥ and Y~ are distribution equivalent, as was to be proved.

Corollary 3.2.1

Replace condition a) in Theorem 3.2.1 by the following one:
a ) for every 6€0, there is a null set Né €A’ such that

(a.1) ijéNé, Ye(w) =.Yé(w')

where w is any inverse image of w” by H, i.e. H(w)

Then Theorem 3.2.1 still holds.
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3.3 The Effect of Point Simplifications on Behavioral Frames

In this section we shall investigate the simplification effect
exercised by a point simplification on the behavioral frames of the
base space. Our goal is to elucidate the nature of this effect
and to derive an interpretation that would properly fit the under-
lying conceptual framework of Appendix B and Chapter 2.

We start with an interpretation based on the characterization
of measure preserving point morphisms in Theorem 3.1.1. Loosely
speaking, the theorem states that the existence of a m.p.p.m between
probability spaces is equivalent to preservation in distribution of
certain distinguished and comprehensive behavioral pairs.

Under our conceptual framework, this interplay between 'structure"
and "behavior" is hardly surprising. It coincides with our general
view that structure is the totality of behavior and that the two
notions are dual. Thus, in Theorem 3.1.1, point simplifications which
are structure lumping at the sample space level and meagure preserving
at the o-algebra level, emerge as equivalent to preservation in
distribution of certain superframes,

Now, Theorem 3.2.1 provides a natural way of matching random
variables over point morphic probability spaces. In the sequel, if
S = {(Q,A,P) is some underlying probability space, then M(S) will denote

the set of random variables over S.

Definition 3.3.1

Let SHES” be a point simplification from S = (Q,A,P) to

S =«(Q”",A",P"). The matching operator from S to S” associated with

—

[k
R
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sl s~ is H:M(S*)—=M(S) defined by

H(Y") = Y, where for every weQ Y (w) 2 Y (H(w)). : a

The matching operator is investigated in [D1] (see Sec. 3 of

Supplement). Some properties of H are given in

Lemma 3.3.1
Let H be the matching operator associated with a point
simplification SFE>S’. Then

a) H satisfies RV,, RV

1» RV,, RV; and RV, in [D1] pp. 453-454.

4
b) The range of H (denoted R(H)) satisfies

R(H)c {Y: YeM(S), and Y is constant on H 1(v”), Vu’eQ~}.
c) Every pair of random variables Y€ M(S*) and H(Y") € M(S)

is distribution equivalent.

Proof
H 1(A") A {A: A = H1(A") for some A“eA”} is a sub-o-algebra of A.
CQnsider the set transformation h: H 1(A“)—=A induced by H where

M) ha & U HwY, vAeH 1A,
weA

It can be verified that h is bijective, and furthermore, that both

h and h™! satisfy MP, MP, and MP, in [D1] pp. 452-453. From [D1] p. 454

it.now follows that H is the unique trénsformationvsatisfying'a);
Condition b) follows from the fact that if Y = H(Y"), then

(2) vweQ, Y(w) = Y (H(w))

by definition of H. Equation (2) further‘implies that

(3) {w: Y(w)&B} = H1({w": Y (") €B})
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for any Borel set B, whence c) follows by the measure preserving

property of H™1,

A full characterization of the range of H is given in the

following theorem.

Theorem 3.3.1

Let H be the matching operator associated with a point simplifi-
cation sSHbS” where S = (Q,A,P) and S” = (9°,A",P”). Then

(a) R(H) = {Y: Y is measurable on H l(A")}.

Proof

| If YeR(H), then Y is measurable on H !(A”) by (3) in Lemma
3.3.1. Conversely, suppose that Y is measurable on H 1(A“). Suppose
first that Y = IA for.some AeH 1(A“). Then Y €R(H) because

H(I IA by RV2. The proof for an arbitrary Y measurable on

H(A)) T

~1an
H ' (A®) follows from RV, and RV,. o

Loosely speaking, Theorem 3.3.1 shows.that the effect of H on
M(S”) is to match it with a subset of M(S), whose elements have
restricted measurability. Moreover, Y~ is a distribution equivalent
lumped version of H(Y”), due to c) and b) respectively in Lemma 3.3.1.
Y~ is also seen to be a coarser version of H(Y”) by (a) in Theorem 3.3.1.
Later on, we shall argue that this restrictional effect may be
viewed as the effect of the point simplification SFH>S’ on the set
of behavioral frames of S. To élarify this view we shall consider

point simplifications which are substantive in the following sense.

y p C - N _
. v ]
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Definition 3.3.2

Let S = (Q,A,P) and 8° = (Q°,A",P” ) be probability spaces.
A point simplification sHbg- is called strict if

a) HE 6 A such that VE“eA”, P(EODH-I(E’)) >0 . n]

Observe that non-strictness means that S and S” are point homo-

morphic (i.e. H }(A”) equals A) up to null sets.

In the sequel, we shall use the equivalence relation &3- (equalify»

almost surely) on M(S), where S = (Q,A,P) is some underlying probability
space. This relation is defined by
a.s. . PP _
Y1 =52 Y2 iff P({w: Yl(w) # Yz(m)}) =0 .
An equivalence class under &3 jis denoted [Y] for any representa-
tive Y €M(S), and will be referred to as the set of versions of Y.

Next, we characterize strict point simplifications in terms of -

its matching operator H.

Theorem 3.3.2

Let SHbS- be point simplification. Then
sHbs- is strict iff
H is not surjective in the sense that there is Y € M(S) such that

(@) [YINRH) = o .

Proof

(=) Assume sHbg- is strict. Let E €A be the event satisfying

0
(a) of Definition 3.3.2. Consider the indicator function IE of EO.
: o
Suppose that for some null set Ne A there is a version IE&N of IE
0

[t
<W'v

B
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such that IEDNG R(H). But from Theorem 3.3.1 it follows that
0

Ippy 1S measurable on H 1(A“). 1In particular, E(§>N eH 1 (A") viz.
0

=1 - - - -
(1) H (EO) = EODN for some EoeA .
Taking note of (1) we have
PH I(E?)) = > (E b =
P(EO H (EO)) P(E0 (EO N)) =0

which contradicts (a) of Definition 3.3.1. We conclude that

[IEO] NRH) = o.

(&=) Assume that SHbS- is not strict. Then A = o({H 1 (A" UND)
where N is the class of null sets in A, Consequently, if Y is
A-measurable, there is a version Y* € [Y] which is H !(A”)-measurable.

By Theorem 3.3.1, Y*€R(H); so that [Y]NR(H) # ¢ as required. O

From Definition 3.3.2 we see that in order to render a strict
point simplification a nonstrict one, one needs to coarsen the
c-algebra of the base space. Now, Theorem 3.3.2 asserts that this is
equivalent to limiting the scope of random variables over it to
those which have a version in R(H), and by Theorem 3.3.1 these are
H 1 (A”)-measurable. We then proceed to claim that this can be viewed
as the effeét of a point simplification on the behaviorél frames of
its base space. To do this we argue that the underlying point simpli-
fication may be replaced by an equivalent one as follows.

Let SPH>S' be a strict point simplification where S = (Q,A,P)
and S© = {(Q“,A”,P”). The alleged equivalent point simplification is
SH-3 where I is the m.p.p.m of Example 3,1.3; that is, S = (5,&,5)

where & & Q, Al H (A", pd P|K, and I is the identity map.

{See Figure 3.3.1.)

! ; ; * L
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Sa = (Q’,A’,P‘)

S = (,A,P)

8= (a,H1AN,P)

Figure 3.3.1: Relations among the Equivalent Point

Simplifications Sr—iS‘ and Sl—I>§.
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To qualify the equivalence claim above we merely point out that
S and 8”7 are point homomorphic, so that §kﬂ>3’ is a nonstrict point
simplification. Consequently, SPE>S’ and SFL>§ can be viewed as

equivalent simplifications, since their base spaces are identical,

and their lumped spaces are point homomorphic and therefore probabilis-

tically equivalent in the sense of Definition 2.1.1.

In particular, Theorem 3.3.2 guarantees that all random variables
in M(S8°) and M(8) can be exhaustively matched (up to equality almost
surely) in a distribution preserving manner via the matching operator
H associated with the non-strict point simplification s-i3,

Thus, we are justified in trying to determine the simplification
effect of the point simplification seths- from the equivalent point
simplification SF£>§, especially as regards the behavioral frames.

The lumping effect of SF£>§, as far as '"structure'" is concerned,
is evident, since H 1(A”) is a coarsening of A in the sense that the
former is a sub-o-algebra of the latter. In particular, every atom+
of H1(A*) is a union of atoms of A.

The simplification effect of sHe8 as far as '"behavior' is
concerned can now be described as a reduction in the scope of the
behavioral frames of the base space S. For one thing, M(S)::M(§).
Furthermore, the random variables in MC§) are coarser than those in'
M(S), because restricted measurability of random variables increases
their sets of constancy.

This simplification effect can be seen even more clearly when one

examines random variables in M(S) and M(§) that have mathematical

[

1.
A or ©.

An event A is an atom if every measurable subset of it is either

am

:
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expectations. It is easily seen that the class of such random
variables over S can be obtained as conditional expectations of
random variables in M(S) with respect to the o-algebra H 1(A”).

The smoothing effect of conditional expectations is well known (see
[L1] p. 349); loosely speaking, random variables (with expectation) in
M(S) are averaged to constants over the non-null atoms of H 1A,

thus yielding a random variable in M(S’).'
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CHAPTER 4

JACKSON QUEUING NETWORKS

4.0 Introduction

Jackson queuing networks are a generalization of M/M/s queues,
and as such they provide the simplest generalization from single
queues to networks of queues.

Thus, their study constitutes an essential step in the study of
queuing networks. However, the apparent simplicity, alluded to above,
is rather deceptive. Actually, one witnesses a steep increase of
conceptual and analytical complexities (see Appendix B Sec. B.3) when
going from M/M/s queues to Jackson networks. This increase is cﬁar—
acteristic of the difficulties presented by queuing networks as
compared to single queues.

The term "Jackson networks'" was chosen to acknowledge the pioneering
work of R. R. P. Jackson and J. R. Jackson during the 50's and 60's.
In [JR1] and [JR2] R. R. P. Jackson initiates the gtudy of tandem
Jackson networks, with the main result being a now-classical derivation
of the equilibrium line lengths distributions.

The work of J. R. Jackson in [JJ1] and [JJ2] subsumes the previous
work, by extending the line length results to arbitrarily connected
Jackson networks (which are called by him Jobshop-like networks).

Jackson networks provide an analytical stochastic model for a
variety of real life systems. Typical applications are: computer
operating systems, communication networks, and industrial manufactur-

ing and repair processes. In this chapter we investigate various

140
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operating characteristics of arbitrarily connected Jackson networks.
The discussion will be restricted to Jackson networks whose stations

consist of single servers, unless otherwise specified.

4.1 Informal Description of Jackson Networks

A Jackson network is composed of finitely many stations, each
housing a finite number of identical indepeﬁdent servers operating in
parallel. The service stations are arbitrarily interconnected by di-
rected arcs, indicating permissible paths of customer flow.

A typical service station is depicted in Figure 4.1.1. ’A customer
may arrive at a service station either from an exogenous source or from
other service stations. Exogenous customers arrive according to inde-
pendent Poisson processes. Each service station has a recomposition
switch that superposes all incoming customer streéms. An arriving cus-
tomer is directed into a FIFO'r (first in first out) waiting line with
infinite capacity. Consequently, customers are never lost at the recom-
position switch on account of lack of waiting room. When a customer's
turn comes to be served, he samples an exponentiélly distributed serviée
time. When service is done, the customer entérs a decomposition switch

which is a stochastic decision maker whose task is to route a customer

to his next destination. At this point the customer may leave the system

altogether for an exogenous sink, or he may be directed to any other
service station. Each routing decision is obtained according to a multi-

nominal Bernoulli trial. Such decomposition switches are called Bernoulli

Actually, almost all results are independent of queue discipline.
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a, exogenous input

endogenous inputs

recomposition switch <

waiting line L

J |
| )
| |
c. ' o o |o. service station i
' )
l l
I i

decomposition switch endogenous outputs

a exogenous output

Figure 4.1.1: Typical Node i in a Jackson Network with
Multiple Server Nodes.
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switches (see [DC1]). All switchings are instantaneous operations.
Finally, all exogenous arrival processes, all service processes and
all routing decisions consist of mutually independent random variables.
This completes the informal description (in the sense of Chap-
ter 2) of“Jackson-queuing networks, A formal representation of a Jackson
network as a coordinate probability space follows Example 2.5.3. Notice
that a family of finite dimensional distributions has been specified
via one-dimensional ones,due to the mutual independence of the subse-
quent generator set, viz. exogenous arrivals, services and routings.
The coordinate space representation will be used in the next chapter.
It is convenient to associate with a Jackson network a directed
graph, to describe its 'stochastic' topology. The nodes of the graph
are numbered 1,2,...m and stand for service stations. The node set of
a Jackson network is denoted M é'{1,2,...m}; the arcs are denoted

(i,3), 02 1,j < m, in the natural way. Node O denotes a fictitious

service station interpreted as the "environment'" (i.e. both the exo-

genous 'source'' and the exogenous "sink"). Each arc (i,j),1< i,j< n,
is labeled with the routing probability pij asspciated with it. The
resulting substochastic matrix Pmim[pij] is called the switching matrix
of the network. The probability Pi, of quitting the network at node i

is denoted by q. & 1 - Pp.. 2
is denoted by q, = 1 - }gapij = Pio-

v

The arcs leading to the environment sink and those originating at
the environment source are called, respectively, outlets and inlets of
the network.

The parameter of the Poisson arrival process‘to node i is denoted

by a..

1+ The vector of input parameters a 4 (al,uz,...am) is called an



Figure 4.1.2:
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Graph Representation of the Topology of a
Jackson Network.
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arrival vector if o 2 0, Observe that Po; = %/ }i‘luj. We shall label
inlets of the network by oy rather than by POi' JEikewise, the service
vector is o & (01,...,om), provided o > 0.

The graph associated with a Jackson network is depicted in Figufe
4.1.2. Note that arcs labeled by pij =0 or oy = 0 are simply deleted.
Graph terminology is extensively used throughout Chapters 4 and 5.

Definition 4.1.1

Let M = {1,2,...m} be a finite node set. Let a = (ul,...um) be an

arrival vector, o = (o ,om) - a service vector, and mem - a switch-

REE
ing matrix. Then the quadruple JN = (M,a,0,P) is called a Jackson

network specification. O

Once the background conventions of Jackson networks are understood,

a Jackson network specification JN is an economical way to describe a

particular network by specifying its parameters.

4.2 A Stochastic Queuing Model

In this section we develop a formal stochastic model for the
queuing process described informally in the previous section.

Let JN = (M,a,0,P) be a Jackson network specification. We begin
with m(m+2) mutually independent right-continuous Poisson processes

T a®X . . s . .
denoted {Ai (t)}tEO (each with 1nt§ns1ty ui) and {Sij(t)}tZO (each with
. . ‘ . . ex
intensity o;p;,),for 1< i<m, 0< j<m. The {A; ()},
ing stresms of exogenous customers at the respective nodes. Each
ex .
(A{ (t)}tz0 is called the aewogenous arrival process at node i. The
< <

{Sij(t)}izo’ 1$ism 0%52j<m will later on aid us in modeling the

traffic processes on the arcs (i,j).

modél the incom-
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The service mechanism at each node i is modeled by the process

m
A .
{Si(t)}tzo where Si(t) = ;g%sij(t)’ The {si(t)}tZO are mutually inde-

pendent Poisson processes (see [Cil], p. 87) with respective intensities

o, - Each {Si(t)}t>o will be referred to as the serviece process at

node 1i.

Finally, the associated underlying jump process fJ(t)}tZo is de-
m ,
fined by J(t) & 3 A%%(x) + f:l f}b 8;5(6) = il(Agx(t)afsi(t)).
i=1 i=]l j= 1=

The queuing model to be described is motivated by the following
observation. |

Consider the stream of customers emerging from service station i
at its decomposition switch. Given that throughout some time interval
the queue was nonempty (busy period), the customer stream in that inter-
val accords with a Poisson process with intensity os . When the queue
becomes empty (idle period), the customer stream dries up. Thus, this

-customer stream is, loosely speaking, a periodically suspended (inter-
mittent) Poisson process.

Another way of saying it is that this customer stream is a filtered
Poisson process whose count in idle periods is masked out, so that only
counts taken during busy periods are registered.

A similar observation is valid for the customer stream on the arcs
(i,j). During busy periods, these streams are obtained ffom a Poisson
process with intensity PP acted upon by a Bernoulli switch,with proba-
bility pij for choosing arc (i,j). It follows that during busy periods,
these traffic streams are mutually independent Poisson processes with
intensities Uipij (see [Cil], p. 89). The‘{Sij(t)}tZO defined before

will play the role of the background Poisson processes whose appropriate

- e eom em
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filtering will later on yield the traffic processes on the arcs (i,j).

We now proceed to define two sets of stochastic processes. First
some preliminaries. A process in the first set is called the traffic

procese on arc (i,j) and denoted'{Aij(t)} 1<i<m 0%3j<m.

t20°
Aij(t) is the traffic count on arc (i,j) in the time interval [0,t].

A process in the second set is called the (local) state process at
node i, and denoted'{Qi(t)}t>o, 1<i<m Q(t) is the line size at
node i (including any customer in service at time t). We shall also

need the following auxiliary processes derived from the above whenever

they are defined.

The endogenoas arrival process'{Agn(t)} at node i is defined

t20
by

m
AP(t) & Y AL(t) , 1%5i<Sn.
i j=1 Ji

The departure process {D;(t)}.,, at node i is defined by
m

< = <
D, (t) & j}:,oAij(t) , 15i<m.

The state indicator process {Bi(t)}tZO at node i is defined by

L fos 1o =0
Bi(t)= ,lfifm.
1, if Qi(t) >0

We assume that there are given random variables Qi(O), 1sis$m such
that Q(0) 4 (Q,(0),...,Q,(0), the Agx(t),and the Sij(t) are mutually
independent. Qi(O) is called the initial state of node i.

. w0
Let {Tn}n=0 be a sequence of random variables where T is the n-th

jump instant of'{J(t)}t20 and T, 4. Then, almost surely

0 =1y <7 < ...<T1 <.... Recall also that almost surely

Agx(m=°a“dsij(°)=0,1515m,05j5m,



148

The definition of the traffic processes and local state processes

is carried out in two steps.

In the first step we define simultaneously the sequences of random

variables {Aij('cn)}nz and {Q, (v )}n S 1Si€m 053 Sm by
n
A
(A1) AgyCrg) = 2B (g IS 5(70) = 83507 ,)]

(A.2) Q(r) 290 + ATY(r) * AT (T - Dy(r)

Lemma 4.2.1
. @ s < < i <
The sequences ﬂﬁj(Tn)}n= and {Q. (Tn)}n_ i<m 0<j<m,

are well-defined.

Proof

The proof follows from the fact that the Aij(rn) have a recursive

representation

‘o, ifn=0
(1) Aij(Tn) =

(Ag; () * S35 () = 8350y N1, ifn >0 [

1n1

In the second step, we extend the {Aij(Tn)}nT and the {Q (T )}

n’ “n=0
to the respective continuous parameter stochastic processes {Aij(t)}t>0
and {Q'(t)}tzo’ 1<i<m0¢5j<mbysetting forany t 20

J(t)

A
(B.1) A0 = 20 By(7 U835 - 835(5 )]

(B.2) Q;(6) 2Q;(0) + AT*(t) + AJ"(®) - D; (1)

We point out that the processes defined above do indeed comply with
their informal description in the previous section.

First, note that the sum in (B.1l) is taken over all possible jumps

- NN e mE My m om
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of {J(t)}tZo in thg interval [0,t]. Each term Sij(r ) - Sij(Tk-l)’ al-

k
most surely equals0 or 1. Only when both Bi(rk_l) and Sij(Tk) -Sij(rk_l)

evaluate to one, does the respective term contribute to the sum in (B.1).

Q)
Next con;ider Di(t) = fz 1 Tl [s (T ) - 8. ('r )]

which counts service completions at node i in the time interval [0,t].
Clearly, the time interval separating any two consecutive jumps of
{Si(t)}tzo is exponentially distributed with parameter o, We.argue
that any time interval separating any jump of {A:x(t)}t>0 and the very

is also exponentially distributed with parameter

next jump of {Si(t?}tzo

0., due to the forgetfulness property of Poisson processes. Further-

i’
more, all such time intervals are mutually independent. Consequently,
exponential services rendered are correctly modeled.

Finally, (B.2) is a stochastic balance equation that keeps track
of the line length at time t, in terms of its initial value and the
traffic through the réspective node during the time‘interval'[O,t]f

In order to facilitate the investigation of the processes above,

we shall rewrite (B.1) in equivalent intergral representation

"
(C.1) Aij(t) = J(.Bi(x—)dsij(x) (almost surely)
. 7
by which we mean that the sample functions are Riemann—Stieltjesintegrals
t
(C.2) Aij(w,t) =.}r§i(w,x-)dsij(w,x), for almost every w.

0

(C.2) is almost surely well-defined, because for almost every w,
Bi(m,t) and Sij(w,t) are step functions with finitely many jumps. It
can now be directly verified that the integral representation (C.1)

reduces to the random sum representation (B.1).

Henceforth, o(Y) will denote the o-algebra generatéd by a set Y

of random variables.
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Theorem 4.2.1

1A

Forany 1 <i<m0<j<mandt20

t
(a) E(Aij(t)) = inijs/;r(Bi(x)=1)dx.

Proof

Consider the integral representation
t

(1) A @) = J(Ei(x—)dsij(x).
0
For any fixed t, let m: 0=t < tfn) < ... < tén) =t

n
be a sequence of partitions of the time interval [0,t] such that

>

A m) _.(m)
" osgﬁn{lt e e 20

For the same fixed t, define a sequence {Ag?)(t)}n:1 of random

variables where
Ln

@ AP 4 1:1 B, (g I8 5 (™) - 855D,
Next, we show that

3 A;_{’j‘) (t) — A (®) (almost surely).
n—>°°

Let w be a sample point such that

(4) Aw) & infl{t'-t": J(w,t') -.J(w,t") > 0 and t',t"e[0,t]} > 0. |

Observe that A(w) > 0 almost surely.
Next, let n0 = no(w) be an integer such that
(5) 4, < Aw) , .Vn 2 n,

Then

(n) - >
(6) Aij ) = Aij(t) , ¥n 2 n,
whence (3) follows.

Next, we deduce from (1) that E(Aij(t)) exists and is finite
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because
(7 o5 E(A; (t)) E(S; (t))
Hence
' (m)
(8) BAT ()= B (0) .
(n)) is

We now proceed to compute this limit. Since each B (t

measurable on

IA
(a4
(AN
ot
gk
=
-
[—)
-

o({Q; (0), ASX(t), S,.(t): 1%i % m 0<j<m, 0

ij
(n) (n)

) is independent of S (t

Consequently, from (2)

Ly
9 B ) = 350, s, ) - 5y, -
£n
TP, (2 = 1op, (t(n) @y

k-
(9) Is a Riemann sum whose integrand Pr(Bi(t)=1) is continuous in t.
To see this, note that {Bi(t)}t>o is stochastically continuous, viz.

(10) Pr(|B; (t+e) - By (t-€)|#0) S Pr(lJ(t+e) - I(t-8)]) =

-(§:<x-+§:o )+ 2€

1 -¢ i=1 i=1 ~E;j>0

which implies convergence in distribution (see [W1], p. 23). Thus, (a)

is obtained from (9) by passage to the limit as m, E]

We now direct our attention to the state prooess'{Q(t)}t§0 where -

e

Q(t) (Qi(t),...,Qm(t)) is the vector of line sizes in the network at
time t. We shall likewise denote B(t) (B t),.. ,Bm(t)),

AS(E) & (ATX(E), .. LATK(E)), ATT(E) & (AT, AT (D),

D(t) = (Dl(t),...,Dm(t)), etc. We shall also denote for any s < t,

A%%(s,t] & A%X(t) - A®%(s), A®M(s,t] & ASM(v) - A°T(s),

D(s, t] D(t) - D(s), etc.

o
ot
L]

-

(Tl

B 2

(a2
L
Ll
re
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Theorem 4.2.2

The state process {Q(t)}tZOis a Markov process with stationary

transition probabilities. Moreover, {Qeleyg is conservative.’

Proof

Consider the stochastic equation

v
o

(1) Q) = Qo) + A%X(t) + A% (t) - D(O) ot
derived from (B.2).

For any s £t, (1) can be rewritten as
) Q) = Qls) + AK(s,t] + AT (s,t] - D(s,t]
| From this representation and by tracing back the definitions of
A®X(s,t], A®"(s,t] and D(s,t], we deduce (with the aid of the recursive
representation in Lemma 4.2.1) that Q(t) is measurable on

(3) o({Qi(s), Agx(u) - Agx(s)) Sij (U) - Sij (S): us(s’t]’ 1 < i < m,

for any s s t.
Since Q(s) is measurable on
(4) o({Q;(0), AJ*(x), S;;@): T s, 15ism 0535 <m,
it follows that o¢(Q(s)) is independent of the o —algebra
o({A?x(u) - Agx(s), Sij(u) —\Sij(s): ue(s,t], 1 <i<m, O 5 j $m}).
The Markov property of'{Q(t)}tz0 now follows from Theorem C.1.1 in

Appendix C, in view of (2) and (4).
Next, it follows from (4) that {Q(t)}t>o has stationary transition

probabilities, because the‘{Aix(t)} and {Sij(t)}t>0 have independent

t>0

increments with stationary distributions.

Finally, {Q(t)}t>o is conservative because its jumps are contained

THas finite number of jumps in every finite interval with
probability 1.

N EN Ny NS ar NN AN N M Iy aE s e
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in those of the conservative process {J(t)}tzo' O

In view of Theorem 4.2.2, the discussion in Sec. C.1 of Appéndix C
applies to the state process {Q(t)}tZO‘ Accordingly, we denote ‘the
probability vector of Q(t) by q(t). In particular, the Kolmoegerov
forward equation of the state process (see ibid.) is equivalent to the
system of integral equations
@ q,(t) = q (00" + Zu, q,() ¢r e

for every state v = (nl,...,nm) Z 0. The summation in (D) is over all

-Cv(t—X)dx

m-dimensional non-negative integer vectors u.
In our case
n mn
= . . = >
(E) cvf'QE%Qi+£§;Gi(1'pii)_b(ni)’ for any v = (ny,...,n ) 20
where
10, if n, = 0
b(ni) =
1, ifn, >0
i
Furthermore, the quantity e~ Cvt giving the probability that no event
capable of altering the state v occurs during (0,t], also satisfies
-cyt m m
e =Pr(N N (Ai'(t) = 0))
. R j
i=0 j=0
j#i .
Hence, the probability of a jump from state v in the interval (t,t+h]
is cvh + o(h).
Since a transition between non-adjacent states (see Definition

C.2.2 in Appendix C) requires more than one jump, it follows that the

time derivatives of the respective transition functions satisfy

Py, (tst) =B (e,6) =0 , t20.

Thus, {Q(t)}t20 is an m-dimensional birth-and-death‘process (see Defini-

tion C.2.3, ibid.).
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. A - = i
Denoting Pt(nl,...,nm) = Pr(Ql(t) = n1""’Qm(t) = nng and with a
dot to denote derivative with respect to t, the birth-and-death equa-

tions for a Jackson network JN = (M,a,0,P) with single server nodes are

(F) Pt(nl,nz, o) =
m
(F.1) gth(nl,...,ni-l,...,nm)ai-b(ni) +
o
(F.2) }Eipt(nl, .,nj+1,...,nm)chj +
m m
(F.3) 2; 2:Pt(n1,...,ni-l,...,nj+1,... rrl)chJl b(ni) -
i=1 j=1
hia!
(F.4) P, (n 1,...,n)[Eo + Zcq b(n)+Z Zcp ;b@)]
J#l
v=(n,...,n) 2 0.

Note that lines (F.1) - (F.3) give transition rate into state v;
(F.1) is due to exogenous arrivals, (F.2) is due to exogenous depar-
tures, and (F.3) is due to departures from node i resulting in an
endogenous arrival at node j, Observe that traffic on feedback arcs

(i,i) does not change the state of the system.

Line (F.4) gives the transition rate out of state v.
It turns out that equilibrium solutions (see Definition C.3.1 in
Appendix C) for (F) depend crucially on the so-called traffic equation.

This equation will be investigated in Sec. 4.4,
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4.3 Notational Conventions and Terminology

In the sequel we shall occasionally discuss convergence of matrices
and vectors. Usually we deal with finite dimensional matrices and vec-
tors. In this case it is not necessary to specify the underlying norm,
because on finite dimensional linear spaces all norms are equivalent.+
However, whenever norm evaluation is required, it will allude to the

norm

n
@ 1Al = max T Jay|
I<i<m j=1

for any mxn matrix A 2 [aij]'

Observe that for a vector v & (vl,...,me this convention implies.
v m '
® vl = 2 |v]
i=1

All arithmetical relations involving vectors_énd matrices afe
pointwise relations; e.g. if A = [aij] is a matrix, then A 2 0 means
that ajj 2 0 for all i and j. The transpose of a matrix A is denoted
by AT.

If S is a subset of a universal set U, then S will denote the
complement U-S of S in U. The cardinality of a set S is always denoted
by lSl.

To designate submatrices and subvectors, ﬁe introduce the follow-
ing notation. If v is a vector with index set K and S C K, then Vg

denotes the partial vector obtained from v by deleting all coordinates

v., ieS. Similarly, if Q is a square matric with index set KxK and

i’ .
S C K, then QS denotes the partial matrix obtained from Q by deleting

all rows and columns, indexed by S.

tTwo norms over the same normed space are equivalent, if they give

rise to the same set of convergent sequences over the space.

el
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e
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Further preliminary comments and additional notation, concerning
stochastic processes, may be found in Appendix C.

We now proceed to establish a classificatory terminology for
Jackson networks and related conventions. Consider again the graph
representation of a Jackson network (see e.g. Figure 4.1.2). Suppose
& customer arrives along an inlet at some node i. Then,thé path+
traced by him thereafter constitutes a finite Markov chain whose states
are the nodes of the graph, and whose transition probabilities are those
labeling the arcs of the graph. Thus, the graph may be used to repre-

sent the transition probabilities of this process, provided all outlets

are understood to lead into a fictitious node 0 (the "environment sink').

This node corresponds to an absorbing state.

The transition matrix P of this Markov chain is obtained from P by .

adjoining an absorbing state 0 as follows.

/ﬁ 110 07
I
- —
A Plol
(C) P = . : P ., if P is not stochastic
O
p |
Lmo| J
P, otherwise
A m
where Pip = 9 = 1- ;z%pij'

The Markov chain induced byiﬁ'will be seen to play an important
role in determining system and customer behavior. In discussing it,we
shall adopt the usual Markov chain terminology and notation. The

reader is referred to Chapters XV and XVI in [F1] for the pertinent

+
A path in the associated graph is any sequence of nodes connected
by arcs which are labeled by positive probabilities.
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In particular p(n) designates the n-step transition

ij

probability from i to j.

Definition 4.3.1

Let mem be a substochastic matrix. Then:

a) j 1is acoeseible from i (denoted i ~wj), if Pij >0 for some n 2 0.

(n)

b) 1 oommmnioates with j (denoted i «~xj), if i ~xj and j ~v i. 0[]

In the sequel, we shall make it a habit to interchange the terms

"state' and'"node", so as to take advantage of the intuitive content

of the graph representation.

The forthcoming classification of Jackson networks is based on

their probabilistic topology, and cast in terms of B and its associated

graph.

First, we give a node classification.

Definition 4.3.2

Let P be the stochastic matrix associated with a Jackson network

JN = (M,a,0,P). Let i be any node in M. Then

a)

b)

c)

d)

i is called open if lim sz) >0,

N0
The set of all open nodes is denoted O.

i is called completely open if lim pgg) = 1.
N0

The set of all completely open-nodes is denoted A.

i is called partially open if lim pgg) <1

n-re
The set of all partially open nodes is denoted B.

i is called elosed if lim pgg) = 0.
e 1

The set of all closed nodes is denoted C. ]

o

<'ﬁn

e

(4

]

L
e
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Figure 4.3.1 depicts a decomposition of a switching matrix P which

illustrates the relations among the node sets of Definition 4.3.2.

Henceforth, the sets R and T denote the recurrent and transient

node sets, respectively, in a Jackson network.

We make the following remarks concerning the '"random walk" of a

customer in the network. This "random walk" is described implicitly

in the informal description of Jackson networks in Sec. 4.1.

Remark 4.3.1

a)

b)

c)

d)

An open node i has a path leading from it to an outlet
of the network (i.e. 1 ~= 0). Thus, a customer in
node i will eventually leave the network with positive
probability.

A customer at a completely open node i will eventually
leave the network with probability 1. In particular,

A is an open set closed under ~, that is

ieA and i ~o j =% jeA

A partially open node i must have a path leading from

i to the sink 0, and another path leading from i to a
closed node. That is,

i~»0 and i ~» j for some jeC.

A closed node i has no path leading from it to the
sink 0 (i.e. i ~&» 0). Any customer in it is trapped in
the sense that he leaves the network with zero proba-

bility. C is closed under ~> in the same sense as A,

a
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T
— — —
A B C-R R
B | [ _ -
P, o , 0 |, 0 A
)
e e e e IR
_
P, " P, _ P, " P, B
P = I|||._I||I||_||.|.||_.I.||
| |
0 __ 0 " P | P, C-R
| |
|.l.l_|||||.1_.|||I“I.|| C
| _ | p.
0 | o , 0 _ Py R

Figure 4.3.1 Decomposition of a Switching Matrix P.
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Remark 4.3.2

oOuUcC where 0oNC %

a) M

]

]

b) 0=AUB where AMNB=49. All the nodes in O

are transient.

¢) C contains a nonempty finite collection R = {Rk} of

keK
recurrent equivalence classes of nodes (under the communi-
cation relation of Definition 4.3.1), where each R -is

irreducible.

d) The set of all transient nodes is T = 0 U (C-R). ]

We now introduce a Jackson network classification which follows

the pattern of the node classification.

Definition 4.3.3

Let JN = (M,0,0,P) specify a Jackson network.

Then

M.

a) JN is called open,if O
b) JN is called closed, if C = M.

¢) JN is called mized, if it is neither open nor closed.

d)} A subnetwork of JN is called autonomous, if it is not accessible

from any inlet of the network. |

Remark 4.3.3

a) If a Jackson network is open then all its nodes are completely
open, because in this case B = ¢; thus, O = A by part b) of

Remark 4.3.2.
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If a Jackson network is not open then it contains a collec-
tion of mutually non-communicating closed sets. This

collection is {Rk}kEK in-¢) of Remark 4.3.2.

We now demonstrate our classification in

Example 4.3.1

Consider the Jackson network of Figure 4.1.2. We have

A

B

o
"

a
L}

3
B

The

{4,5,6}

{1}

AUB = {1,4,5,6}

{2,3}

{2}

0OUC - R = {1,4,5,6,3}

network is clearly a mixed one.
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4.4 The Traffic Equation

The traffic equation is a formal expression of a flow conserva-
tion relation,which plays a crucial role in determining the equilibrium

behavior of a Jackson network.

Definition 4.4.1

Let JN = (M,0,0,P) be a Jackson network specificatien. The
traffie equation associated with it is

(A) 6 =oa+ 6P

(8 § ).

in the unknowns ¢ 100020y

v

A solution 8§ Z 0 for (A) is called a traffic solution. 0

The intuitive content of (A) is best seen when we rewrite it as a
system of linear equations.

(B) &; =o; + j=16jpji , 1%i<m

Now, if one interprets each 61 as the traffic intensity 6f customers
through node i in equilibrium, then (B) merely states that the total
input intensity to node i equals the output intensity from it when the
system is in equilibrium.

J. R. Jackson used this intuition in [JJ1] to give sufficient éon-
ditions, for open Jackson networks to‘evolve into equiiibriUm, in térms
of the traffic solutions of (A). However, he does not investigaté (A)
and its solutions nor does he justify the intuitive interpretation
above of &.

In this section we shall investigate the formal equation (A). The
results will be later on tied to a discussion of state equilibrium in

the next section.
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Lemma 4.4.1 (cf. [BM21], Theorem 4.1)

Let JN = (M,a,0,P) specify a Jackson network,and let T be its
set of transient nodes. Then there is always a unique traffic solution

for T, given by

n
(a) GT—GTZ PT'
n=90

Prodf
It follows from our definitions that
(1) ieT and jeR =} j/-;/ai =3 pji=0'.
Now, (B) and (1) enable us to write
(2) GT = o + GTPT )
From the transience of T we have (see [KS1], p. 22) that 2: P¥ is
. n=0
finite,
Furthermore,
-1 hd n
(3 (@-P) =3P
T =0 T
where I is the identity matrix.
Next, rewrite (2) as
(4) ST(I - PT) = aT
In view of (3) we immediately conclude that (a) is a traffic solution

for T. Moreover, this solution is guaranteed to be unique by the

. . -1 .
existence of the inverse (I - PT) . []

Lemma 4.4.2

Let JN= (M,a,0,P) be a Jackson network specification, and define
D4 BU(C-R). Assume that oy = 0.

Then 8 = 0 is’'the unique traffic solution for D.

o
e
(3]

pre

Ly
borem
L o
e
re

(i~
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Proof
It follows from our definitions that

(1) ieD and jeD == j ~(»1i ;pji =0.
Again, (B) and (1) permit us to write

(2) 6D =0+ GDPD
and since oy = 0, (2) reduces to
3 GD = GDPD.
Since DC T, it follows from Lemma 4.4.1 that there is a unique solution

for (3). Clearly SD 2o is a solution for (3). Hence, this must be the

unique traffic solution for D. Ol

We are nmow in a position to characterize the existence of a traffic

solution.

Theorem 4.4.1

Let JN = (M,a,0,P) be a Jackson network specification and let A be

its set of completely open nodes. :

Then, a traffic solution exists iff og = 0.

Proof

Partition P, o and 8§ as follows:
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Consequently, the traffic equation (A) is equivalent to the following

two equations:

(1) §A o, + 8P, + G-Q

A A A
Note that

(3) A=BUC=BU(C-RUR=DUR.
If A = & the theorem holds trivially by Lemma 4.4.1. Therefore we ﬁay
assume that A # ¢ in the sequel.
(&) Assume that
(4) o = 0.
Since AC T, there exists a unique solution for 6A due to Lemma 4.4.1.
Therefore, the existence of a traffic solution is equivalent to the
existence of a solution for GR in (2).
But by assumption (4), Equation (2) reduces to
(5 GR = GRPR
which has a traffic solution 6- = 0,
(=) Suppose g # 0, and let ieA have
(6) w©; >0.
By (3), ieBUC. . If ieC, then there is clearly a node reR such
that i(~\a»r. If ieB, then by c) of Remark 4.3.1 there is
a node ceC such that i —~sc. Consequently, for each iel
(7) HreR such that i ~, r , i.e. Hno such that pifo) >0 .

It follows from Markov Chain Theory ([F1], p. 389) that

@ Tpl 103

n=n,
Next, substituting GR repeatedly on the right hand side of (2)

k times yields

[
2
e
-
L
wn
<n
e
"
o
™

L=
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K X
©) o= o5 X "+ i P* 5 > op - PIRCOTE

For node rei we have from (9)
Sar 3 o 2 g 3 L
(10) &_2% ) a, 5‘ 20, ), pi T e
T jeh Jn-o Jr 15 i koo
k
since due to (8), (n o
ce due o()zpr) .

koo

Hence, Gr has no bounded solﬁtidn,and consequently,éi has no

solution either. []

Corollary 4.4.1

o = 0 iff no closed node is accessible from an inlet. Moreover,
og = =0 = GAQ 0, where Q is a partial matrix of P given in the

Theorem above. []

Although Corollary 4.4.1 follows from Theorem 4.4.1, the following
direct proof of og = 0 — GAQ sheds more 1light on the situation.
Refer to Theorem 4.4.1, assuming that of = 0.

Notice that each coordinate in ,GT\Q has the form ZAGJPJI for some
ieA. ‘ I

In view of (3) in Theorem 4.4.1, either jeD or jeR.

If jeD, then Gj = 0 by Lemma 4.4.2, since "in Qarticular an = 0.
If, jeR, then j~7%<s i, since ieA. This implies that Py; = 0.
Consequently; either 6j = 0 or pji = 0.

Hence, in any event, §.p.. = 0 for any jeA and any ieA, whence

)31
2 6.0,

jeA j Jl

We now proceed to characterize the uniqueness of the traffic

solution.
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Theorem 4.4.2

Let JN = (M,a,0,P) be a Jackson network specification for which

a traffic solution exists.

Then, the traffic solution is unique iff the network is open.

Proof
(&) Assume that the network is open. Then by a) in Remark

4.3.3, A= ¢,Sp that M= T. The uniqueness of the traffic equation now
follows from Lemma 4.4.1.

(=) Assume that the network is not open. Then C # ¢ and conse-
quently A # o.

By Theorem 4.4.1, for a traffic solution to exist, it is necessary
that
(1) U.'A = 0
so that Equation (2) of Theorem 4.4.1 reduces to

By Lemma 4.4.2 & = 0, where D ABUI( - R), since (1) implies oy = 0.

D

Hence, in particular,

(3) §cp =0

Now, (3) and (B) allow us to deduce from (2) that

(4) SR = GRPR

where R is the set of recurrent nodes and each Rk is irredu-

{Rk}keK

cible. Observe that P_ is a stochastic matrix. Due to the nature of R,

R

Equation (4) is equivalent to the system of equations

(5) 8 =6, P R keK
TRy Ry

where each Rk is a stochastic matrix.

o
:"’
Lo}
o
S
o
G
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"
e
e
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It is known from Markov Chain Theory (see [KS1], p. 100), that for
each keK, there is a probability vector nk satisfying the respective
equation in (5). It is also clear that for each keK, the entire
linear space spanned by Hk solves the respective equation in (5). Hence,
(4) does not have a unique solution in GR‘ We conclude that the traffic

solution is not unique. O

Corollary 4.4.2

If JN = (M,a,0,P) specifies an open Jackson network, then the

unique traffic solution is

§=afl -P) l=aSp".
w1 - P ad =

Since the traffic solution may not be unique, it is of interest to

determine the dimensionality of the traffic solution space.

Theorem 4.4.3

Let JN = (M,u,6,P) specify a Jackson network for which there is a

non-unique traffic solution. Let " & (6*; 8" R 5 ) be such
» T R1 RIK,

a solution, where K is the index set of the irreducible classes {Rk}kEK

Then, the traffic solution space is |Kl~dimensiona1 in the sense

that any traffic solution § has a representation § = (6;; Yl&;; cen 3

Y|K|6;1Kl)~in terms of 6§  and some scalars Yl";"Y|K| 2 0.

Proof

Since the traffic solution for T is unique and in view of

Theorem 4.4.2, it suffices to show that for every keK the respective



169

equation
(1) 8, =6_P
Be Rk
has a 1-dimensional traffic solution space in the sense above. But

this follows immediately from the fact that (1) has a unique probability

solution (see [KS1] p. 100). . 0
The conservation aspects of the traffic equation is illustrated in

Theorem 4.4.4

Let JN = (M,u,0,P) specify a Jackson network for which there exists

a traffic solution 6. Then

m m
(@) 2 a; = 2 895,
1=1 1=1

Pzoof

From the traffic equation (A) we have
(1) a=6(1I -P).

Let u 4 (1,1,...,1) be the m-dimensional row vector of 1's. Post-
multiplying both sides of (1) by uT gives

(2) ol = 8(I - Pyul .

- v
A direct computation shows that auT = E:ai and (I - P)uT = qT, where

i=l
q t (qys..+,9,). Hence (2) becomes
h1i] T m
(&) 20y =8a = 3 80,
i=1 _ i=1
which was to be proved. |

Intuitively, Theorem 4.4.4 asserts that the total influx intensity

of customers into a Jackson network. equals the total outflux of

(s
=
™
o
i
wn
[
[
Lkt
e
L
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customers from it, when the network is in equilibzrium.

On the basis of the facts accumulated thus far, we can now give an
intuitive interpretation summarizing the(investigation of the traffic
equation,

First, by Theorem 4.4.1, the existence of a traffic solution is
equivalent to the fact that only completely open nodes may have inlets.
If, however, any other node had an inlet, then there would perforce be
a path from an inlet to a recurrent subset of nodes. Such subsets are
closed by defihition, and hence are customer trapping. Intuitively,
this means that customers would pile up indefinitely in a trapping sub-
network. Clearly, this subnetwork would be out of balance as regards
the rates of customer flow through it; the influx of customers into 'it-
would be positive but the outflux would be zero, in contradiction with
the intuitive interpretation of the traffic equation as describing a
balanced flow rate of customers through each node and each subnetwork
for that matter.

vIndeed, the transient node set has always a traffic solution by
Lemma 4.4.1, since customers will never be trapped in them and flow
rate balance can be always maintained. When a traffic solution is
puaranteed to exist, it follows that, in particular, nodes in T-A can-
not have access from an inlet. Consequently, they eventually lose
their customers due to their transient nature,without being replenished
with new ones. Eventually, customer traffic in them would die out and

this part of the network would come to a standstill. Indeed, Lemma
4.4.2 shows that the equilibrium traffic.rates through them is zero.
However, customers that drain out of this set and into the recur-

rent nodes of the network would cycle there forever. Since this set
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is autonomous, it neither gains nor loses customers. Eventually, the
number of customers in each irreducible class will reach a fixed level,
and a balanced flow rate through its nodes will be attained.

Indeed, even though a traffic solution exists for the recurrent
part, by Theorem 4.4.3 it cannot be unique. It depends on the total
(fixed) nuﬁber of customers that cycle in each of its irreducible

classes. Intuitively, this depends on the initial configuration of

customers in the network and how they drain into the recurrent node set.

from the non-completely open part of the transient.node set, Since
there aré |K| irreducible ciasses, the solution has IK] degrees of
freedom in accordance with Theorem 4.4.3. Each degree of freedom cor-
responds to a choice of totai number'of customers in each irreducible
subnetwork (in equilibriﬁm), and the resulting traffic solution is
proportional to this total number. |

Our discussion Has several important ramifications, provided that
§ may be interpreted as equilibrium flow rates of customers through
nodes, and‘that the existence of a traffic solution is necessary for
equilibrium. Since these will be shown to be true in the nextisection;
we shall defer the discussion of this issue until this intuition can

be formally justified.
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4.5 The State Process in Equilibrium

In this section we study equilibrium properties of the state
process and equilibrium related aspects. The reader is referred to
Appendix C, Sec. C.3 for some relevant background. Accordingly, a

probability vector of the state process {Q(t)} will be denoted by

t20
q(t), and an equilibrium vector by q°.

State equilibrium results may be found in the literature for open
Jackson networks and autonomous ones. These we now proceed to cite;
the reader is reminded that all Jackson networks alluded to have single
server nodes.

The following classical result for open Jackson networks is due to

J. R. Jackson (See [JJ1]).

Theorem 4.5.1 (Jackson's TheoremT)

Let JN = (M,a,0,P) specify an open Jackson network. Suppose that

for each 1 < i € m,

(a) o,

1

ne>
A} o
e

<1
i

P

Then, the birth-and-death equations of the state process {Q(t)}

where & ..,Gm) is the (unique) traffic solution of JN.

t20
have an equilibrium solution vectox‘clo, which for any v = (nl,...,nm) 20
is given by

m n-
) q) £ Prg(t) = ny,...,Q(t) =n) = i1=]1(1—pi)pi1 :

Proof
By direct substitution into the birth-and-death equation (F) in

Sec., 4.2 (see [JJ1]). Ml

*Originally, this theorem was proved for open networks with arbi-
trary number of servers in the nodes.
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An analogous result was proved by Gordon and Newell for autonomous

closed Jackson networks (see [GN1]).

Theorem 4.5.2 (Gordon-Newell Theorem')

Let JN = (M,a,0,P) spécify an autonomous closed Jackson network
with communicating nodes. - Let #M: be the total number .of customers in
the network,: such .that
(a) Pr(#iM=mn) = 1.

Then, the birth-and-death equations of the state process have an.equi—
librium solufion vector q° = q°(n) (depending on n), which for any

v = (nl,...,nm) 2 0 is given by

0 A - - - -
(b) qj(n) = Pr(Q () =n,...,Q () = n [#M=n) =

0, if ||v]| #n

1 o on,
gn) _[[pi
i=1
5.

where g(n) is a normalization factor, and Py = 5 where

§ = (8 .,8.) is any traffic solution.

1,.-

Proof

By direct substitution into the birth-and-death equations (F) in

Sec. 4.2 (see [GN1]). , .

+Originally, this theorem was proved for autonomous closed
networks with arbitrary number of servers in the nodes.



174

The results cited above reveal a remarkable property of the state
process; they exemplify an equilibrium solution for the state process
{Q(t)}tzo’ whereby the local states Qi(t), 1 <i<m, are mutually
independent for every fixed t 2 0. Moreover, each local state process
{Qi(t)}tZo in the open network behaves as Zf node i were a M/M/1 queue
with exogenous input parameter Si (see [JJ1] pp. 378-379).

J. R. Jackson points out (see [JJ2] pp. 135-136) that for open
networks, the recurrent state set of the global state process is irre-
ducible, and thus the equilibrium solution vector of Theorem 4.5.1
is a long Tun vector (see Definition C.3.1 iﬂ Appendix C). However,
only an outline of a proof is given by him. We shall now prove this

fact in detail.

Theorem 4.5.3

Let JN = (M,a,0,P) specify an open Jackson network that satisfies

the conditions of Theorem 4.5.1.

Then, its equilibrium solution vector qo is a long run vector.

Proof
It suffices to show that the recurrent states of the global state

process are irreducible (see [Cil] p. 264). To do this we show that

the zero state 6 2 (0,...,0) is accessible from every state

v o= (nl,...,nm) 2 0. It suffices to show that v' —~_, v for every pair

of adjacent states v' and v such that v' = v + e; for some 1 £ i <mn

(ei is the unit vector with 1 in the i-th coordinate). The desired

result v' ~— B then follows by an immediate induction on ||v'||.

;_ . _ — — _-

- e
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Now, since the network is open there is a sequence of distinct
nodes jl’j2”'°’jk such that

1 P

Consider the sequence of adjacent states {v } 0, ‘where. Ve = ',

=vand v, = v - e. +e., 1%2%<k. We show that

v
. -1 Joar Iy~

k+1

1 () >0 for 0 £ 2 <k and t > 0,by using the integral represen-
27841

. tation (G) in Sec. C.1 of Appendix C for the functions Py, iV (t) viz.

2+1
—CV2+1(t_x)
(2) p (x)c T e dx
p“z“z 2: Vg LA WO

because v, # v, ., 0 < % £ k. However (see ibid.),

~-Cy,t
(3 p () 2 > 0.
VeVg

Substituting (3) in the term u = v, on the right hand side of (2)

yields for t > 0,

) @ fo, . ® e 9
P t) = J/}) X)c T e X2
VoVl e Ve VeVe+1
F-cv X -Cy (t-x)
fe e x, e L+1 dx.
LS A 2% |
0
Observe that r > 0 for all 0 < & = k since
Vv,V
272+1
cipijl
Tov, " T, T 7 ¢ > 0
01 1 Vo
and o5 pj 3
r | = SR IR g gy 1€ <K,
L7442 S
» L
due to (1).17 Hence,
(5) D, (k) >0 for some t, > 0
l 2+1
.1.
The rvzv are the conditional probabilities that the state will
2+1
jump from v, to vl ) given that a jump has taken place.
+
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Now, applying repeatedly the Chapman-Kolmogorov equations gives us

k k
6) by, (2t) = Ip,  (t) >0,
VIVIETD Y a0 VeV
Consequently, v' ,~=» Vv as required. ]

We note in passing,that Theorem 4.5.3 holds for the networks of
Theorem 4.5.2, but it does not hold, in general, for arbitrary ones.
Also, the state process need not be recurrent in mixed networks, For
example, transient states are engendered by putting n, > 0 in
v = (nl,...,nm} for any open node i with Gi = 0.

Even if a mixed network has an equilibrium vector q°, it may not
be unique, because the asymptotic state of closed subnetworks does de-
pend on the initial conditionms.

Our next step is to exhibit to what extent condition (a) in The-
orem 4.5.1 is necessary for existence of equilibrium in mixed Jackson

networks.

A requirement of the form ;%-< 1 is an "obvious' necessary condi-
tion for equilibrium, provided Glcoincides with the vector of equili-
brium traffic rates through nodes.

We shall now show that this intuition is largely justified. For-

mally, we prove

Theorem 4.5.4

Let JN = (M,a,0,P) specify a mixed Jackson network that possesses
an equilibrium vector q0 for its state process. For any t 2 0,
let E(D(t,t+l]) 2 (B(D,(t,t+1]), .. B (t,t+1])).

Then, E(D(t,t+1]) satisfies the traffic equation, provided q(0) = q°.

- S N Wy N e O O N O .
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Proof

Since Di(t) E:A. (t) , it follows from Theorem 4.2.1

t t .
m .
(D E(Di(t))= z:oipij J/}r(Bi(x)=1)dx = oi'J(br(Bi(x)=1)dx.
J=0 0 ) .
In particular, |
t+1
(2) E(Di(t,t+1D = E(Di(t+1)) - E(Di(t)) = oi:/}r(Bi(x)=1)dx.
Tt ‘
By the equilibrium assumption on {Q(t)}tZO it follows that each
{Bi(t)}tzo is in equilibrium and thus Pr(Bi(x)=1) = const. for all
xe(t,t+1]. Hence, (2) becomes

(3) E(Di(t:t+1]) = Ulpr(Bi(t)=1) = Gipr(Qi(t) > 0).
Next, we apply generating function methods to the birth-and-death

equation (F) in Sec. 4.2. The generating function of q° is defined by

Hie>

[o] m ni
q I z;

Vv .
v=(n1,...,nm)20 i=1

(4) @(zl,...,z )

m

and it exists in the domain {z = (zl,...,zm); lzil <1, 1=<13i*¢s m},

provided we define 00 & 1,

For each v .= (nl,...,n )}, multiply both sides of (F) in Sec.
m
n.
4.2 by [I z, 1 and sum the outcome over v = (n1
i=1

left hand side of (F) in Sec. 4.2 is always zero for qo (see Theorem

,..w,nm) > 0. Since the

C.3.1 in Appendix C), we obtain after some algebraic manipulation

m
(5) 0= 2 o(z,,...,2 )05[2;-1] +
&

[@(z .,zm) - @(zl,... 0. 2 )]o D [

1n 1
_2:[¢(zl,...,zm) - ¢(21""’0"'"’zm)lciqi[if" 1] +
1=1 1
m
%; i’ jrii

(3=

i

P

[
i
e
ervon
rr

L3
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Here and in the sequel Oi indicates a zero in the i-th coordinate and
similarly for 11'

Observe that by setting 2, = 1 in @(zl,...,zm), the resulting
function ¢(21,...,1k,zm) is precisely the generating function of the
process (Ql(t),...,Qk_l(t),Qk+1(t),...,Qm(t)),subject to q(0) =
thus, @(zl,...,lk,...,zm) = @(zl,...,zk_l,zk+1,...,zm). Consequently,

whenever we set z, = 1, k'# i for any fixed 1 < i ¢ m, (5) reduces to

(6) 0 = o(z)0,[z;-1] + [2(z)) - Q(Oi)]ciqi[% e
1

NE

[0(2;) - ¢(z;,09)10,p;; 125711 +

de e
]
e

™M=

[e(z;) - ¢(0;)Jo,p; 2 - 1]

itij Z;

e e
H N
e

0 < |z4]

After collecting terms, (6) becomes

(7) 0= (¢(z)a; + Z[Mz)-¢u,onop ) Mz;-1] +
i
m
[#(z;) - @(0)](o;a; + ;E%inij)[zi-— 1]
3
0 < |zi| <

and a further simplification of (7) yields

(8) 0= (o(z;)a; + E: [o(2;) - 0(2;,09)]05p5:)[2;-1]
j=1

j#i

[o(z;) = 800103 (b3 ) 5~ - 1]

0< |zl <1

: ) K \ F i . ; p _ : B
S Ey B BE B BN SR A B BN G B al O = Ea .
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For 0 < |z;| < 1 we may divide both sides of (8) by z; - 1,

whence (8) becomes

%)

(10) Pr(Q; (t)

NE

[o(z;) - ¢(0,)]o; (1-p;5) = (@(zy)ay + 1[®(2i) - ¢(zi,0j)]ojpji)zi
i

[SEPT
N

0 < Izil <1,

n,
Equating coefficients of the zi1 on both sides of (9) gives us

n

n3)o; (1-py5) =

Pr(Qi(t)

~Da. +
n, l)a1

m
j§1["r(Qi(t) = n;-1)- Pr(Q;(¢) = n;-1,Q;(t) = 0)]ospy;
i#1

1 <n, <o,
i

For each 1 £ i £ m, sum the system of equations (10) over 1 E n, < e,

We get

m
(11) Pr(Q;(t) > 0o, (1-p;;) = o; + ZPr(QJ- (t) > 0)o;py;

(12)

j=1
j#i
1<3i<m,

Substituting (3) in (11) and rearranging its terms gives us

m
' <3<
E:E(Dj(t,t+1])pji , 1si<m

E(Di(t,t+1]) = a,
j=1

+
1

Comparing (12) with (B) in Sec. 4.4 shows that E(D(t,t+1]) does

indeed satisfy the traffic equation, for any t 2 0. |

Corollary 4.5.1

If JN = (M,a,0,P) is a - mixed Jackson network in any equilibrium

qo, then

a)

the associated traffic equation always has a solution §" defined by’

>

8" = E(D(t,t+1])

[
=
<
T
wn
“wm
e
e

-
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where 6" depends on the equilibrium vector q°.

b) E(D(s,u]) = 8" (u-s) for any s < u.
t+1

c) 6; =0i:[Pr(Bi(x)=l)dxsoi , 1<i<m , foranyt20.

t

We now refine part (c¢) in the above corollary, as follows.

Theorem 4.5.5

Let JN = (M,a,0,P) specify a mixed Jackson network. If there is

an equilibrium vector qo for {Q(t]}tzo,then

(a) p; < 1, for every node i with p,, <1
¥ .
where Py £ 33- and 6; £ E(Di(t,t+1]) for any t 2 0

1

Proof
*
By ¢) of Corollary 4.5.1 the traffic solution § = E(D(t,t+1])
satisfies
*
< <
(1) Gi < oy s 1$3i<m

Suppose, however, that there is ieM with Py; < 1, but 6i = 0;.
Then by ¢) of Corollary 4.5.1 we get Pr(Qi(t) > 0) = 1 whence
(2) Pr(Q; (£)=0) = 0
We proceed by induction. Suppose that
(3) Pr(Qi(t)=ni—1) = 0. |
Setting (3) in (10) of Theorem 4.5.4 yields
(4 Pr(Q(t)=n;)o, (1-p;;) = 0.
By assumption P;; < 1, whence from (4)

(5) Pr(Q;(v) =n,)

0

as o, > 0 always.

- em O WS A ) as am

M - =B s
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But (5) shows that every state of {Q(t)}t>0

impossihle in view of the fact that it has an equilibrium vector q°
(see [Cil] p. 263).
We conclude that Gi =0, is impossible for nodes i with pii <1,

so that (a) follows from (1).

We can now sum up our discussion of state equilibria situations of

open and autonomous Jackson networks with single server nodes.
The following theorem characterizes existence of equilibrium in

mixed networks.

Theorem 4.5.6

Let JN = (M,a,0,P) specify a mixed Jackson network. Then,
the network has a state equilibrium vector qo iff the following two

conditions hold:

a) the associated traffic equation has a traffic solution

* A
§ = E(D(t,t+1]), t 2 0;
®
p 84
b) p; T 5 < 1 for any completely open node.
i
Proof

(=) Suppose the network has an equilibrium vector qo.
Then a) holds due to part a) of Corollary 4;5.L andvb) is implied by
(a) of Theorem 4.5.5 (observe that in equilibrium every completely
open node i always has P;; < 1).

(€==) Suppose a) and b) hold. ‘ ’
Denote by J(vA) the Jackson solution (see (b) in Theorem 4.5.1) for

the completely open part A.

is transient,which is
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Denote by qo(llvR ||) the Gordon-Newell solution (see (b) in Theorem
k

4,5.2), obtained for each recurrent irreducible node set Rk’ kek.

Having chosen a distribution for each #Rk, keK (recall that #Rk is

the total number of customers in Ry in equilibrium), we define

A = o) 0
1) Gvy ) & 2 q° mPr#R=n) = qC ([|v, [DPr#r =||vy |]).
. Rk 10 ka k v Rk Rk Rk

Lemma 4.4.2 guarantees that the remaining node set D has a unique
1, if vp = 0 .

A

traffic solution §_ = 0. Denote Z(v,) =
D )] .

0, otherwise

Finally, it can be verified by direct substitution into the
birth-and-death equations (F) in Sec. 4.2 that

(2) ) & Il -20p)- ML60R ), v = (e

is an equilibrium vector- of these equations. , 1

Condition a) of Theorem 4.5.6 agrees with the heuristic observa-
tion that a network containing a closed subnetwork, which is accessible
from an inlet, cannot have an equilibrium vector.

Intuitively, in this case, customers would be "trapped" in that
closed subnetwork, and their number would grow indefinitely. Indeed,
Theorem 4.4.1 guarantees that this does not happen, because existence
of a traffic solution 8§ is equivalent to the requirement ag = 0.

Condition a) of Theorem 4.5;5'agrees witﬁ the intuition that in
equilibrium each node i, exdéluding the trivial case Pii=1, must have
service rate o4 which exceeds the influx rate-&? of customeis into i.
Otherwise, customers would "pile up" in that node and its line would
grow indefinitely.

We now proceed to characterize uniqueness of an equilibrium

vector for mixed Jackson networks.

-
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Theorem 4.5.7

Under the conditions of Theorem 4.4.6
a) there is a unique equilibrium vector q°
iff
b) the traffic equation has a unique solution 8.
Otherwise, every initial condition q(0) determines an equilibrium vec-

tor qo such that q(t) ———’qo.

toco

Proof
Condition a) holds iff the equilibriUm vector defined in (2) of

Theorem 4.5.6 has no G factors. |
Now, this happens iff the network has no closed nodes (i.e. iff the

network is open). But then we know by Theorem 4.4.2 that a Jackson

network is open iff it has a unique traffic solution.

Next observe that q(0) determines the asymptotic distribution of
total number of customers in each Ry and hence of #Rk, keK (see, e.g.
[KS1] p. 52 for absorbing probabilities of single customers). This in

turn determines the choice of the G(ka) in (2) of Theorem 4.5.6. O

The foregoing discussion shows that in equilibrium, the state pro-

~cess of a mixed Jackson network can be studied separately for the com-

pletely open part A and each irreducible recurrent part R, , keK. The
remaining node set D is devoid of customers with probability 1, and
for all practical purpoées can be reﬁoved from the network.

It is also interesting to noté that the equilibrium state behavior

can be completely determined from a simple algebraic equation--the
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traffic equation--as far as existence, uniqueness and form of equilibria

solutions are concerned.

4.6 Total Service Times and Number of Visits to Nodes

In this section we investigate two customer-oriented behavioral
frames: total service time and number of visits to individual nodes.

The total service time S of a customer is the sum of all service
times the customer receives at the various nodes of a Jackson network
from the instant of his arrival at the network until he exits the
system at some outlet. The tetal service time of a customer in the net-
work, given that his entry node to the network was i, is denoted here gi'

Our main tool of analysis will be generating functions--in this
case the Laplace-Stietjes transform (abbreviated LS transform) --of the
relevant distribution functions.

The LS transform of the distribution of S is defined by

(o]

(") g @ f e P dFa(x)

where dﬁg(x) designates the Laplace-Stieljes measure induced by the
distribution Rg of §. Likewise, fi(g) denotes the LS transform of the
distribution of g;,and vi(g) denotes the LS transform of the distribu-

tion of the service time Si at node i. Observe that

%3
+0. ’
& 1

(B) v.(x) = £ 20

because node i accomodates exponential servers.

Next, let f be the column vector f & (f1""’fm)T and q the column

)T Finally, let T be the

vector q 2 (ay,...,9,) " where Q3 4 D

ip®

diagonal matrix whose i-th diagonal entry is 5.
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Theorem 4.6.1 (cf. [BMZ1], Theorem 5.1)

Let JN = (M,a,0,P) specify a Jackson network. Then for ¢ > O
-1
(1) f£(z) =U "(¢)q

where U(Z) = [uij(c)] is an mxm matrix defined by

4 T
(2) uij (C) = ('6,‘: + 1)Cij - pl]

where Gij is Kronecker's delta.

Proof
A customer arriving at node i receives a service time Si with LS

transform vi(;). Then, he either exits the network (with probability

qi) or is routed to node j (with probability pij)’ whereby his residual

total service time is §5 with LS transform fj(;),
Since all individual service times are mutually independent, we

are led to the renewal-like equation
m

(3) £,(2) = la; + ;éapijfj(c)]vi(c} , 1%isSm.

Substituting vi(c) into (3) from (B) and switching to vector notation
gives us
(4) (eI + INf(z) = T(q + P£(2)) .
Premultiplying (4) by r~Yand factoring out f(g) yields
(5) (er™' +1- PO =q.
Now, define
6) uE) daerler-p,
Then U(g) coincides with (2), and (5) becomes
(7) U@f(z) =q .
It remains to show that U(z) is invertiblevfor any g > 0.

Now, U(z) can be written as
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By uniqueness of the solution f(z) of (4) we conclude that

o) A
13) £ = £ 2 1ip £ (pointwise 1limit)
nroe
so that f is indeed a possibly defective generating fumction. . [

The defect of each fi(c) is interpreted as Pr(gi = »), To compute

the defect we employ

Theorem 4.6.2 (cf. [BMZ1], Theorem 5.1)

Let JN = (M,a,0,P) specify a Jackson network. Then, for any
. = ( ) (n) _ s
1 P . o . .
£1ix<m, r(S < ®) = 10 Moreover, 11m Pio Cig+f1(;)

or alternatlvely 11m p( ) 1 i g m, constitutes the minimal solution
of the equation
(1) u=q+ Pu

in the column vector of unknowns u = (ul...u ).

Proof.
The defect of each fi(g) is

() 1-lim £,(3) = Pr(S; = «).
Lo+

By (11.¢) in Theorem 4.6.1 we know that for any ¢ 2 0, f(n)(;)+f(;)
as n+o, Furthermore, since vi(c)fvi(O) as z>p+ for each i (see (A)),
it follows from (10) in Theorem 4.6.1 that for everyvn =0,1,...
£ 23+ £®) (0) as z+0+, by induction on n.

Using these facts we obtain from (2)

(3) Pr(ga <) = 1im f£,(g) = 1lim 1lim f( )(C)

>0+ Tr0+ Moo

lim 1im £ (0) = lim f(n)(O) £ 0y = £, (0)
e >0+ 1 1

[ee
s
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because monotone limits are interchangeable.
Next, denote f(n)(O) & u(n) and set ¢ = 0 in equation (10) of

-1
Theorem 4.6.1. Premultiplying the outcome by I' = for each n = 0,1,...

gives us
(4 u(O) = 0 and u(n+1) =q + Pu(n) , n=20,1,...
Now,{.u(n)}n:0 is a monotone and bounded sequence and thus its

pointwise limit u exists. Sending n>= in (4) shows that u satisfies (1),
and by induction on n one can show u to be the minimal non-negative

-solution of (1). Hence

g ©) = é <1 2
(5) Pr(Si < ®) = fi(O) = u, _, 1<ism
and it remains to show

- s (n) < 3 £
(6) u, = %ig P; ¢ s 1 ism.

Expanding (1) by components and writing pio for a gives us

m
= <4 £
(7 u; = pig * ;gipijuj s 1<is*m,

A standard result in Markov chain theory (see [Fl], Sec. XV.S,
Theorem 2) shows that the minimal non-negative solution of (7) is pre-
cisely the probability of eventually being absorbed in node 0, given

that the initial node is i. Thus, (6) holds as required. O

The defect of f(z) can now be characterized in terms of the

topology of the network as follows.

Corollary 4.6.1

For any Jackson network

a) Pr('é'i <) =0 , if ieC .
b) Pr('s'i <) =1 , if ieA .
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c) O < Pr(si < )} <1 s if ieO-A . : O

It is interesting to note that f(Z) has a relatively simble form.
The representation f(g) = U-l(ch shows that éach fi(c) is a rational
function whose denominator is a polynomial in ¢ of degree m at most.
This is so because the denominator of each entry .in U-l(c) is the deter-
minaﬁt of U(z), and by definition of U(gZ) it is seen to be such a
polynomial. Consequently, £(z) is a transform of’mixed exponentials.

The comments above are alsofpertinent fo the unconditional total

service time S due to the following.

Lemma 4.6.1 (cf. [BMZ1]), Sec. V)

Let JN = (M,a,0,P) specify a Jackson network. Then the generating

function of § is g(z) = r-f(z) where r A ||:||

Proo

The probability that a customer enters the network at node i is

os o

o LI > _ . Hence the generating function of S is

&, Tl

=1’
m : :

g(r) = z:rifi(;) = r.f(g) as required. M
i=1 ' ‘

Corollary 4.6.2 (cf. [BMZ1l], Sec. V)

Al m e
E(S) = D x;E(S;)
i=1 |

Consequently E(S) < = iff ay = 0, i.e. no closed node is accessible

from an inlet. This is equivalent to existence of a traffic solution

by Theorem 4.4.1. O
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We now proceed to compute E(gj when it is finite. Clearly, in

this case, it suffices to compute E(S) for open Jackson networks.

Theorem 4.6.3 (cf. [BMZ1], Theorem 5.2)

Let JN = (M,a,0,P) be an open Jackson network. Then E(§3 = ::QI:
o
S 8
o 1 m
where p = (EI”""E—O'
m
Proof

By Lemma 4.6.1, the generating function of S is
(D gl@) = r-£(7).
Using in (1) the moment property of generating functions (in our case
LS transform) we get

(2) E(S) = - lim r-f'(%)
>0+

where the prime indicates differentiation with respect to Z.
Next, differentiate both sides of

(3) U(R)-£(g) = q , z >0 .

(Cf. Equation (1) of Theorem 4.6.1.)

We obtain

(4) Ue)-£'(z) +U'(r)-£(z) =0 , g>0

and since U’l(;) exists by Theorem 4.6.1 for ¢ > 0, (4) becomes

() -f'(@) =V V(@ ER  , T >0,
Now, for open networks, the defect of each fi(c) is

- ~ o = . (n) _ _ _
(6) 1 Pr(Si < © =1 - %&2 Pi, = 1 1 =0

A~
because every node is transient in P, save 0 which is an absorbing node.

Therefore

(1) £

where u is the row vector of 1's.
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Next, since U(g) = cr;l + 1 - P (see (6) in .Theorem 4.6.1), we have‘

(8) U'(z) = rt.

Finally, we assert that

@ vl —ra -t Y.

L0+ n=0

To see this observe that (U(g)-r}'1= RC where RC is defined as the

resolvent operator for (I - P)T at the value ¢ (see [T1] Ch. 5, Sec.

: -1 .
5.1). The origin belongs to the resolvent set as Ry = (1-P) exists.

Hence, RC

(9) now follows,since U 1(0) = (I - P)”! by (6) in Theorem 4.6.1.

-1 oy o1 :
—> R, as L*0+; i.e. T U (g)— r'lU‘l(O) (see ibid.).
0 Lo+

Substituting (5) into (2) and using (7), (8) and (9) gives us

(10) E(g) = 1im r.U-l(E)qu (2)£f()= v+ (I - P)-l-‘l"-l-uT.

_I;+0+
Substituting ra and denoting o+ & (—E3...,l—9 , We see
|1 % O
that (10) becomes
(11) E(S) = —2— (1 - P)'I(G‘IJT S T - Llo]]
| el |1l o]
since § = a(I - P)"1 from the definition of the traffic equation. []

We now proceed to investigate the number of times Ki’ that a
customer visits node i during his stay in the network. LetK denote

A
the vector K = (Kl""’Km)'

Theorem 4.6.4 (cf. [BMZ1] Theorem 6.1)
Let JN = (M,a,0,P) specify a Jackson network.» Then

(1) E(K) = r(I - )~
[0}

[o]]

where r &

s

=

-

»~

whr
L 2gl

&

e
=
orem
rr

o=
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Proof
Let Kij be the number of visits of a customer to node j, given
that his entry node to the network was i. It is a well known result

(derived from the finite Markov chain with transition matrix P) that

E(K;;) = n‘éopi(?) (see [KS1] p. 46).

Hence the unconditional number of visits Kj to node j satisfies

m )
E(Kj) = 2:]%_ 2:p§?). In matrix notation this is expressed as (1),
i=1 ~ n=

which was to be proved. ' A

Remark 4.6.1

>
e

, we have E(K) = —— (I - P)"!. Consequently,

ol | [all

E(K) < o iff the traffic equation has a traffic solution §. O

Since r =

Since in this case aA = 0, we have that E(K.) = 0 for any ieA.
i

Taking &* 4 (GA; 0) we can write E(K) [f6T|
§

r + E(K)P of the traffic

"

Thus, E(K) then

satisfies the normalized version E(K)

equation § = o + 8P, obtained by dividing the forcing term a--and hence

the solution 8--by ||a||. If no traffic solution exists, then

E(Ki) < o for ieA, E(Ki) = 0 for every i which is not accessible from

any inlet, and E(Ki) = o for all the other nodes.

Remark 4.6.2 .

The expected total number of visits to nodes by an arbitrary
customer is ||E(K)]].

If E(K) < «, this becomes-LLQLL

Tal] o 0

S S N Iy am aw e
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4.7 Traffic Processes on Arcs

In this section we investigate traffic processes on the arcs of
Jackson networks. Recall that.{Aij(t)}tZO is the tréffic process on
arc (i,j),where.Aij(t) is the customer count on it during the time |
interval (0,t].

In the process, we isolate a class of arcs whose traffic processes
will be shown to be Poisson processes, whén the nefwork is in equili-
brium. 'This resultbmay be viewed as a generalization of Burke's The-
orem (seé [B1]) which states that the traffic process on the outlet of
a M/M/1 queuse, in eQuilibrium,is a Poisson process. The generalization,
however, is stronger in that ﬁe show that the set of arcs to which it
applies includes the outlets of Jackson networks. Moreover, for cer-
tain sets of such #rcs, we will show that the Péiéson traffic processes
on them are mutually independent processes.

The treatment relies heavily on the switching matrix P, or equiva-
lently, on topological properties of the graph éssociated with the
underlying Jackson network. Recall that the associated graph can be

viewed as a representation of the accessibility relation ~~y (see Defi-

nition.4.3.1) among the network's nodes. The communication relation
w~—x (see ibid.) is easily seen to be an equivalehce relation; as such
it induces a partition into equivalence classes, each consisting of
mutually communicating nodes.

Let us call each such equivalence class a component of the net-
work, and for every node i, let {i] denote the component C such that
ieC. | |

The accessibility relation ~3 on the node set of a Jackson network

induces a partial ordering on its set of components. This partial order

o
P
-
P
-
£
(3]
-
e
-
re

L
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will also be denoted by ~—»; namely C; —~»C, iff there exist ieC, and
jsC2 such that i —~»]j.

It follows that if C; ~» C, then i ~» j and j ~» i for any
isCAmand jeCz. The partial ordering of network nodes and com-

1

ponents induces a hierarchy of Jackson subnetworks as follows.

Definition 4.7.1

Let JN = (M,a,0,P) specify a Jackson network and let L CM.

We say that JN(L) 4 (L,uL,oL,PL) is a partial network of JN if

a) ielL and j o~y i = jeL. n

Remark 4.7.1

Equivalently, L in Definition 4.7.1 satisfies

icl and j¢L = py; = 0 O

Observe that a partial network of some underlying Jackson network
is self-contained in the sense that it can be analyzed as a full-fledged
Jackson network. As a matter of fact its complement can be completely

ignored because a partial network is not accessible from its complement.

Definition 4.7.2

Let L C M be a subset of nodes in a Jackson network JN = (M,c,0,P).
Let T a {i: ieM and HjeL such that i ~>» j}.

Then JN(L) 4 (t’uﬁ’cf’Pi) is called the partial network generated

by L. O

Notice that the partial network generated by a subset of nodes L,
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contains all the components [i] such that ieL together with all the
components from which L is accessible.

In addition to the hierarchy of partial networks, the accessibility
relation ~» may be used to partition the arcs of a Jackson network
into two claases as follows.

If C, and C, are components such that Ci ~>» C,, then C, ~l» C,.
Thus, arcs fall into two disjoint categories: those between components
and those within components. The former set may be characterized as

follows.

Definition 4.7.3 (cf. [BM1], Definition 3.1)

An arc (i,j), 1 $i sSm, 0 £ j S m, in a Jackson network

JN = (M,a,0,P) is called an exit are if

a) Pyj > 0 but j 174» i. | Cl

Intuitively, an exit arc (i,j) is characterized by the fact that a
customer that takes it will never return to i for further services. In
this respect, an exit arc behaves much like an outlet. Indeed, every
exit arc is an outlet of some partial network, and this fact provides

the basis for the aforesaid generalization of Burke's Theorem.

Theorem 4.7.1

Let JN = (M,0,0,P) be a Jackson network, and let K(t) be any sub-

set of the traffic processes {Aij(t)} 15i%m0%3<5m onsome

t20°
subset of arcs.

Then (Q(t); A(t)) is a conservative Markov process with station-

t20
ary transition probabilities.

oz

ot

A
S
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Proof
For any s S t, the stochastic equation

(1) (QCE)A(E)) = (QUs)3A(S)) + (A(s,tl3A(s,t]) - (D(s,t];0)

holds almost surely, where 6 is a vector of zeros.
The rest of the argument is analogous to the one used in the proof

of Theorem 4.2.2. : []

Let JN(L) = (L,o GL,PL) be a partial network of JN = (M,a,0,P),

L)

where without loss of generality L 4 {1,2,...,2}. Denote
L4 {0ru .

If (i,j) is an exit arc, then we write Eij(t) for Aij(t). The
vector of traffic processes on the outlets of JN(L) (which are all exit
arcs) is denoted by EL(t). Thus,

B () & (B) (6),B ,, (6,0 By (65 o Byg (€ ,E 0 (8),0n By (6))

im
By virtue of Theorem 4.7.1,(QL(t);EL(t)) is a Markov process, and in

view of Appendix C we may proceed to treat the appropriate birth-and-

death equations.

s

Denote Pt(nl,...,n ; k.. Lk .>k k)

2 10) 12+1,-- 1m,0.o,k2’0’k9’2’+1,000’ ,Q,m
Pr( N ﬁ-__[(Qi(t)=ni) F\(Eij(t)=kij)])
iel jel

for any t 2 0 and any vector of non-negative integers

k Lk k k, .,k

[nl,...,n 107Ky a1 Kymr o e 1 Kg o0

m’ 22+1""’k2m)'

With a dot to denote a derivative with respect to t, the birth-

and-death equations of the process (QL(t);EL(t) are
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(a) Pt(nl,...,nz; klo’k12+1""’k2m) =
EP (nl, senesly; klo’k12+1’“"kILm)oib(ni) +
ieL
P,(n,,. ny +1,...,n,; k__,k ,...,k.;—l;...,k )o. p b(k )+
5 g;i 1 2 10°714+1°°° ij Ao
ZEP (n . .—,...,n.+1,...,n;k ,k | seee )cp b(n)—
iel jeL 1’ J 2° 710°712+41 jFji
JH
Pt(nl"“’nz; klo’k12,+1”' km)[za z E:_or P; b(ni) +
iel iel jelL
2 ZGJPJ b(n )]
iel jeL
jfi
for any (nl,...,nz; klo’k12+1’°'°’kzm) 20.
A 0, if n, = 0
Recall that b(ni) =
1, ifn, >0

i

Theorem 4.7.2 (cf. [BM1], Theorem 3.1)
Let JN(L) be a partial network of JN = (M,a,0,P) in eQuilibrium.
Then, the random variables in the set (QL(t); EL(t)) are mutually
independent for each fixed t » 0. Moreover, each Eij (t) in EL(t)_ is

Poisson distributed with parameter &, iP; Jt

Proof

We may assume that the network is‘open,-,b'ecaﬁse the closed'part c
has no outlets except for trivial ones on which the traffic process in
equilibrium is zero almost surely.

In view of the birth-snd-death equations (A), the equilibrium

assumption is

o
i
e
o
S
(e
L
oo
"
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n,

A _ 1 . -
(1) Po(nl""’ng’kIO’k12+1""’kzm) = ;}1(1 pi)pi , if kij P
B VieL,Vjel

0, otherwise
due to Jackson's Theorem (see Theorem 4.5.1). We shall analyze (A) by
means of generating functions, similarly to the equilibrium analysis of
the state process. In our case, the generating function is the

£(m - & + 2)-dimensional z-transform defined by
A
(2) q)(zl!' ")ZQ; Y10!y12’+1," "ylm!' ")YQ'O’YZQI*_I""’yzm) =

EP T Iz 1'y 13 s z y..| s 1, ieL, jeL
v 1EL JEL J l l , I 13‘ < » J ]
where the sum ranges over all non-negative integer vectors

v = (nl,...,nz; klo’k12+1""’k2m)'

The z-transformed version of (A) is obtained by multiplying each

equation corresponding to each v by II Il’zil° 13 Iz | <1, |yij|s 1
ieL jel

with the convention 0° & 1, and then summing the resulting equations
s . >
over all integer vectors v = (nl,...,nz, klo’k12+1""’k2m)
After manipulating the above summation and collecting terms,

analogously to the procedure in Theorem 4.5.4, we obtain

3 ¢ ceesZ | =
() 2z ooz sy WY gy e )

o ; -
EL (z ..’ZQ,’ ylobyl2+1!"',yzm)ai[zi 1] +

\ ceesZo; -
EL EL[ (Z > ’zgs }’IO,YMH,-‘-.,Y,Lm)

Vs

o . - i

(Z ’”"Oi’”"zl’ le’ylﬂﬁl’”"yf,m)]o‘ipij[_;%-— 1] +
1

Z 2[@ (zl,°-°sz£; YIO,Y12+15---,Y2m) -

iel jeL
J# 2,
¢t(zl’.‘.,oj’...’zﬂ,; }’10,)’12_,_1,“-,}’2 )] PJl[ J - 1]
0 < Izil <1, Iyijl 1 ; deL , jeb .
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Here 0i stands for zi = 0.

The initial condition (1) is z-transformed into

: 1-P3
(4) °o(zln'--)zz;}'lo,}’lz_‘_l:'":y?‘m) = .n '1":'6'.—‘2.‘
iel 171
We shall now show that equation-(A) and initial condition (1) are

satisfied by

* A
(5) Pt(nl,...,nz,klo,k12+1,...,k2m) =

k: =
n, Dt (B:psst) 1]
I (1-p;)p;" M e®iPiy® 1117

ielL jeL ij’

Equivalently, one has to show that (3) and (4) are satisfied by the

z-transformed version of (5), namely by

(6) ¢:(zl,...,zl;yw,ylhl,...,ylm) = .Hi:_pT
iel™ "1%1

To prove this we use the following idéntities :

1-P;

* ' i
(7) 4’0(21""’ZQ;YIO’YIZ+1""’y2m) = .Hl—_sz_z;

2%
(8) (I)t(zl:'-',zz;ylo,ylz+1,--°’yZm) =

»*
¢t(z1,...,zl;ylo,y12+1,...,yzm) Z : ;:>sipij(yij'1)'
iel jelL

* * |
(9) Qt(zl...zz;ylo’ylz-i-l."YQIm) - ¢t(21._..oi...22;}’10,}'12’_’_1..-}’2]“) =
* .
¢t(zl...zl;y10,y12+1..-yzm)-pizi , 15iinm,
for any i=1,2,... m. .

Equations (7) - (9) may be verified by direct calculation.

Now, (7) shows th N ;
s (1) at that ¢t(z1,...,zz, YlO’ylz+1"'yzm) satisfies

initial condition (4).

Setting identities_(S) and (9) in (3) and writing ¢* for
t

¢t(zl,.t.,zz; ylo,y12+l,...,yzm) gives us

(o]
b
=
e
(¥ )

e

e
r
ferem
e

e
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(10) oy & T85p;;rys-D) = 0 Lay(z-1)

1€L jeL ieL

by Yij
2: P32 °0;Py ( - - 1)t
1eL jeL i

Z
.2, -1
fEi fgi %% chzJ )
ifa!

0 < Izil <1 lyijl S1 ; ieL , jeL .

Since @ > 0 for all t 2 O,whenever 0 < lz | <1, lyijl < 1, we may

divide both sides of (10) by ¢t.' Noting that o,p. = 8., 1 £1i € m,

we can further simplify (10) to

(11) 2. 2.8, P - 1) =
iel jeL 1J J
2oop(zi-1) + X X 8,piy;5m2) v X X 8py . (2;-n)
iel iel jeL iel jelL
jti

0 < Izil <1, [yijl <1 ; iel , jeb .

After some manipulation and regrouping of terms in (11) we obtain

12 X Tep 0y -y)-(ZS iPi -2 0.) =

iel, jeL iel jelL iel
2 (0,420 8,p53)z; - L (208;p; 542 8,95 )2,
iel jeL ieL jeL JEL

j#i j#i

0 < |zi' 1, 'yijl <1 ieL  ,  jelL .

Now, from (B) in Sec. 4.4 it follows that

(13.1) oy + ¢,53p31 = 8;(1-p;,) , 124i<m,
jeL
j#
(13.2) 2: 8. iPi; + 2.6, = 9. 8.p.. = §.(1- < 5 <
jel A ARt R S S U
j#i j#i

and by Theorem 4.4.4

(13.3) 2. 25 p =X a

iel jef ielL *
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In view of the identities given in (13.1) - (13.3), Equation (12)
is seen to reduce to an identity.

This completes the proof of the theorem. Cl

Lemma 4.7.1 (cf. [BM1l, Corollary 3.1)

Under the conditions of Theorem 4.7.2, the random variables in the
process {(QL(t); EL(t) - EL(S))}tZs are mutually independent for every
fixed s, s < t.

Moreover, in this case, for any fixed s, each Eij(t) - Eij(s) in

E, (t) - E (s) is Poisson distributed with parameter Gipij(t—s).

Proof

The process {(QL(t); EL(t) _AEL(S))}tZS is Markovian by én
argument identical to the one in Theorem 4.7.1. In view of thé time
invariance of the birth-and-death equations (A), they still hold when
t is replaced by u 4 t-s. In particular,vthe initiai condition (1)
in Theorem 4.7.2 holds for u 2 0. Conseduently, we thain the réquired‘
independence. It alsq follows that each Eij(t) -.Bij(s) is Poisson

distributed with parameter Gipiju = Gipij(t-s), for every fixed u 2z 0.

Notice that the mutual independence, alluded to in Theorem 4.7.2,
applies to each fixed t. We can, however, prove a stronger independence

result with the aid of Lemma 4.7.1.

Lemma 4.7.2 (cf. [BM1], Theorem 3.2)

Let JN = (M,a,0,P) and JN(L) be as in Theorem 4.7.2. If JN is in

equilibrium, then for any fixed s and t such that 0 < s < t we have

o
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that every event A€U({(QL(u); EL(u) - EL(t))t u 2 t) is independent of

every event in o(EL(t) - EL(s)).

Proof
We show first that for every n, = (nl,...,nk) 2 0 and

k, = (kyn,k ""kzm) 2 0 we have

1027142417
(1) Pr(rlQ (t)=n,, E (t)-E (s)=k) = Pr(A|Q (t)=n)).
First, observe that for every interval (s,u]
(2) o({Q(t): te(s,ul}) D o ({E (t)-E (s): te(s,ull})
because the jumps of the process {EL(t)—EL(s)}te(s,u] are determined by
the jumps of the process {QL(t)}te(s,u]'
Therefore, it follows from (2) that
(3) Aeo({Q(u): u2t})
and (1) is true in view of (3) and the Markov property of {QL(t)}tZO
(see Appendix C, Sec. C.1, Equation ).

Taking advantage of (1) and of Lemma 4.7.1, we compute

(4) P2(A,Q)(t)=n;,E  (t)-E  (s)=k;) =
Pr(A| Qp (t)=n;,E (t)-E; (s) =k; YPr(Q (t)=n, ,E, (t)-E} (s) =k ) =
P(A|Qy(t)=n YP (Q (t)=n YPr(E  (t)-E; (s)=k;) =

Pr(A,QL(t)=nL}Pr(EL(t)-EL(s)=kL)
Summing (4) over all integer vectors n 2 0 gives us
(5) Pr(AE (t)-E (s)=k;) = Pr(A)Pr(E  (t)-E (s)=k;)

which was to be proved. ,[]

Intuitively, Lemma 4.7.2 asserts that the instantaneous independence

of the state QL(t) and the count EL(t) engender a stronger independence
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whereby every increment of a past count EL(t)-EL(s), s £ t, is independ-
ent of the future evolution of {QL(u)}uZt' But since the c-algebra
éene;ated by every future increment {EL(u)-EL(t)}uZt is contained in

the o-algebra generated by the future state {QL(u)}uét’ we ha&e in

payticular -

Corollary 4.7.1

The process {EL(t)}t>0 has independent increments in equilibrium.

Consequently, for any ielL and jeL, {Eij(t)} is a Poisson

t20
process in equilibrium. u}

We now prove an even stronger independence property of {EL(t)}tZO'

Theorem 4.7.3 (cf. [BM1], Theorem 3.3)

Let JN = (M,a,0,P) and JN(L) be as in Theorem 4.7.2. If JN is in

equilibrium,then the traffic processes in {EL(t)} are mutually

t20

independent Poisson processes with respective parameters Gipijt.+

Proof

We already know that each traffic process Eij(t) in'EL(t) is a
Poisson process by Corollary 4.7.1.

Let 1T: 0 = tp <ty <. <ct=t be any pértition df the time

interval [0,t]. Define a set of events

+This result agrees with more general results due to F. P. Kelly
(see [K1] p. 553).
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(n) A _ _ My . F
(1) ClJ (E (t ) E (t ) = kij ), ieL, jelL
for any choice of integers kg?).
It suffices to show that the events Ci?)
Proof is by induction on r. For r = 1 we have

(0 (1)
(2) Pr(NC;.7) = IN1Pr(C..7)
iel 1 ieL 1

jeL jeL
by Theorem 4.7.2.
Assume that the Ci?) are mutually independent for every partition
I with r-1 division points, and show that this is true for every parti-
tion I with r division points.

By Corollary 4.7.1 we have

r-

@ prn nec™y cpecdn N ™) nn c(’j”))) -
n=1 iel + n=1 ielL ielL
jeL jelL jeL
r-1
prCn N cMypr(n et
n=1 1eL iel J
jeL jeL

By the induction hypothesis

r- -1
@ Pren ncy - T HPr(C(n))
n=1 1eL ot n=1 1eL
jel jeL

Furthermore, by Lemma 4.7.1
5) prcncTy = 1 prc®y
i ij
ieL iel
jeL ‘ jeL
On substituting (4) and (5) on the right side of (3) we get

@© pr(n nc™y - HPr(C(n))

n=1 ielL 1 n=1 iel
jeL jel
which shows the induction step to be valid. | O

are mutually independent.
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Corollary 4.7.2

In particular, the traffic processes (E; (t),...,E (t)), on the
outlets of a Jackson network JN = (M,0,0,P) in equilibrium, are mutually

independent Poisson processes with respective intensities qui. N

The foregoing discussion allows us to identify the traffic proc-

esses on exit arcs of a Jackson network in equilibrium.

Corollary 4.7.3

Let JN = (M,a,0,P) specify a Jackson network. If the network is in
equilibrium, then the traffic process Eij(t) on each exit arc (i,j) is
a Poisson process with intensity aipi

j

Proof

Consider the partial network JN({i}), generated by i. It is easy
to see that (i,j) is an outlet of IJN({i}). The required result follows

immediately from Corollary 4.7.1. O

The Poisson nature of traffic processes on exit arcs. of a.

Jackson network in equilibrium has interesting ramifications as regards
the decomposition of the network into components.

J. R. Jackson's cautious statement, that every node i in a Jackson
network JN = (M,a,0,P) in equilibrium behaves as Zf it were a single
M/M/1 queue in equilibrium, can now be strengthened. The ita1icized
reservation in the above statement stems from the fact that it Was not

known whether the arrival process {Ai(t)} is Poisson,or equivalently,

t20
whether the traffic processes in {(Aoi(t)’Ali(t)”'"Ami(t))}tzo are
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mutually independent Poisson processes which are in addition independent
of the service and switching processes of node i (as is the case in the
M/M/l. queue) .

As a matter of fact, this is not the case in general, and we shall
qualify this statement in the sequel. Nevertheless, certain subnetworks
which are not partial networks do more than behave as if.they were
Jackson networks; it can be shown that in equilibrium they indeed are
Jackson networks.

Formally we have

Theorem 4.7.4

Let JN = (M,0,0,P) be a Jackson network. Then, inequilibrium,
every component C is a Jackson network JNc = (C,YC,OC,PC) where

Y Lo, + E:B.p.. , for any ieC.
i S jFii

Let I(C) be the set of inlets of C, not including inlets of the
network JN; that is, I(C) é‘{arcs (i,3): ieM-C, jeC and pij > Q};

Now, every arc in I(C) is an exit arc since it runs between dis-
joint components. vConsider the partial network generated by the set
L 4 {i: ieM and HjeC such that (i,j)eI(C)}. Clearly the exist arcs in
1(0) aré a subset of the outlets of this partial network. Furthermore,
the traffic process {Eij(t)}tzo’ (i,j)eI(C), are mutually independent
Poisson processes with respective intensities aipij’ due to Theorem
4.7.3.

Observe that c({Eij(t): (i,j)eI(C), t 2 0}) is independgnt of |

c({Qi(O),Agx(t),Sij(t): ieC, 0<jsm, t 2 0}), because the former is
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contained in c;‘({Qi (0) ,Aeiax(t) ’Sij (t): i¢C, 0<j<m, t 20}) (see Sec. 4.2).
In particular, for each ieC we may group (superpose) the independ-

ent Poisson processes {Azx(t)} and {Eji(t)} jEC, into a Poisson

t20 t20°

process {Azx(t) + Z:Eji(t)}tzo which has intensity Y; as required.
g
ex . ‘
Furthermore, the {A;"(t) + jzt:CEji(t) beao @eC)ithe {8;:(8) )y,
(ieC, 0 £ j s m), and QC(O) are all mutually independent. We conclude

that, in equilibrium, JNC is a Jackson network by definition. O

Theorem 4.7.4 shows that every Jackson network may be decomposed
into components such that, in equilibrium, each is a full-fledged Jackson
network, which can be treated separately.

We remark that the results have been obtained for Jackson networks
with single server nodes.

We are, however, prepared to make the following

Conjecture 4.7.1

The results obtained thus far hold true for Jackson networks with

arbitrary number of servers in each node. O

In order to validate Conjecture 4.7.1, one has to modify the birth-

and-death equations (A) and attempt to verify that the alleged solution

/

still holds.

The rest of the argument is virtually unchanged. We shall not
undertake to prove or disprove Conjecture 4.7.1 in this work.

The intuitive basis for making Conjecture 4.7.1 is the topological
properties of exit arcs. We observe that this class of arcs is amenable

to a generalization of Burke's Theorem, because exit arcs behave as

L4

o
L]
P
[
Loyl
<
oo
e
foven
[

mon
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outlets in the sense that they don't "affect" the component from which
they originate. Heuristically, this '"effect'" is carried by customer
traffic, and the lack of "effect' means here that customers that take
an exit arc will never visit it again.

Thus, the independent increments of the Poisson counts on exit arcs
in equilibrium may be intuitively attributed to this inherent lack of
future effect.

Quite naturally, this situation begs the question whether on non-
exit arcs (i.e. arcs within components), the equilibrium counting process
is no longer Poisson. If this is true for every non-exit arc, then the
intuitive explication for the Poisson counts on exit arcs would gain in-
creased credibility. This would also lead to a characterization of
equilibrium traffic processes on arcs, and considerable insight into
them will be gained.

The salient feature of non-exit arcs is, of course, that customers
taking these arcs may revisit them with positive probability. In terms
of the associated graph, there is a Cycle (closed path) that begins and
ends with each non-exit arc. This is due to the fact that non-exit
arcs are within components and these consist of mutually communicating
nodes. Thus, in contrast with exit arcs, customers that travel on non-
exit arcs do carry future "effect'" on them. As a matter of fact, part
of the customers in a past count increment on a non-exit arc will
revisit it and contribute to future increment counts on the very same
non-exit arc. Thus, we cannot intuitively expect to have there inde-
pendent count increments in non-overlapping time intervals, even in
equilibrium.

The foregoing discussion leads us to state
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ey
pid
L9
o =
Conjecture 4.7.2 ' e
(2]
Excluding the trivial case P;j; = Ls the traffic processes on a -
e
non-exit-arc (i,j) can never be a Poisson process or even have inde- e
pendent increments. : O

While at this juncture we are unable to prove Conjecture 4.7.2 for

every non-exit, we can, however, show that the traffic processes on cer-

‘tain subsets of non-exit arcs are not Poisson processes in equilibrium.

We know from Theorem 4.7.1 that every process (Q(t); Avw(t) is a
Markov process for any arc (v,w). However, in writing the relevant
birth-and-death equation, one has to distinguish between two cases.

Using the previous notation we have:

Case 1: v #w s 1l gsv, wc< m.

In this case we have

’

mn
(1.a) Pt(nl""’nm;kvw) = Egipt(nl""’ni—l""’nm;kvw)ui'b(ni) +

jEiPt(nl, .,nj+1,...,nm;kvw)ojqj +

m m .

EE% }EiPt(nlf...,ni-l,...,nj+1,...,nm;kvw)ojpjifb(ni).+
3#

(G,1)#0v,w)

Pt(nl"“’nw'l""’nv+1""’nm;kvw'l)ovpvw'b(nw)b(kvw) —»

m m m m
P.(n,,...,n 3k )[Zu. + Eo.q.b(n.) + E 1. o.p:.b(n:)]
tHl Wil a3 j=1 jm1 I 91 )
i
N >
(nl""’nm’kvw) 20 .

The z-transformed version of (1.a) is
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m
(1.b) <I>t(zl,...,_zm;va) = Elzbt(zl,...,zm;yw)ui[zi-l] +

m
1
%[cbt(zl,--.,zm;yw) - ¢t(z1,-.-,Oj,---,zm,yw)]ojqj[z—j- - 1]+

i=1 j=1
j#i
(§,1)#v,w)
zy
W vw
[¢t(zl""’zm’va) = Qt(zl,...,OV’...’zm,yVW)]UVpVW[ zv - 1]

i

0<|zi|51,1SiSm; '|va|S1. : Cl

Case 2: v=w, 1Sv<nm
In this case we have

m
(2.2) Pt(n1 ye e ,nm;kw) = i§1Pt(n1 yeos ,ni-l, e ,nm;kw)ai-b(ni) +

m
JE:lPt(nl,...,nj+1,...,nm;kvv)ojqj +
m m
Z _Z:Pt(nl, ..,-ni-l,...,nj+1,...,nm;kvv)ojpji-b(ni) +
i=1 J=1 -

Nt

Pt (nl PR ,nm;kvv‘l)cva'b(nv) -

m m

)Xoy + Tosqby) +

P.(n,,...,n_sk
thl i=1 j=1J

mvv

j_2=:1 J-z___lldjpjib(nj) + cvab(nv)]

(nl,...,nm;kw) 20,

The z-transformed version of (2.a) is

j:
m m z5
Z _E:[qbt(zl,...,zm;va) - q>t(zl,...,Oj,...,zm;yw)]ojpji[?j—_ 1] +.
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m
(2.b) &)t(zl""’zm;yvv) = Elfbt(zl,...,zm;yw)ai[zi_ll +
m
;Ez[¢t(zl,...,zm;yvv) - Qt(zl""’oj""’zm;yvv)]ojqj[iﬁ" 1] +

mom z.
S : - . 2
Eéi 5;i[¢t(zl,..-,zm,yvv) ¢t(zl,-.-,Oj,.-.,zm,yvv)lojpji[zj 1] +

[0, (2y o025y ) - 0 (25000500500 sz 5y I op Ty -1

€1, 1sis<m ; |yvvi <1, O

We now proceed to characterize conditions under which a traffic
process is Poisson distributed. This will later on aid us in showing

the non-Poisson character of certain non-exit arcs.

Theorem 4.7.5

Let JN = (M,0,0,P) specify a Jackson network. Then
a) every traffic process {Avw(t)}tZO’ 1 £ v,w £m, with Pow > 0
is Poisson distributed
iff

b) Bv(t) and Avw(t) are independent for every fixed t 2 0.

Proof
Set 2, = 1, 1 £i $m, in (1.b) and (2.b). In both cases the equa—'
tions reduce to ‘
. . . ) <
(1) 0y, = 10,000 = 8 0y )lopr -1 s Dyl =1
(==>») Assume that Avw(t) is Poisson distributed. Then its param-
t
eter must be (see Theorem 4.2.1) E(Aw(t)) = cvpvw"[Pr(Bv(x)ﬂ)dx. Hence,

@ b, (v y) = oF Ay (£)) (yvw-1)
vw

(3 &.v,) = ¢t(va)cvpvar(Bv(t)=1)[va-ll
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Substituting (2) and (3) in (1) yields

(4) 2 (7, )OuPy P (B (=D [y, -11 = [0 (yy)) - @ (005y, ) 10py Iy -1]

ly el € 1.
Dividing both sides of (4) by ovpvw[va—;] for va#l gives us (recall
that o Py > 0)
(5) ¢, (y,, )Pr(B (0)=1) = 0, (y, ) - @ O3y, 0

Y| <1 -

Equating coefficients on both sides of (5) results in the system

of equations

(6) Pr(A, (t)=k, ):Pr(B (t)=1) = Px(A, (£)=k, ) - Pr(Q,(t)=0,A, (t)=k,,)

kK =0,1,...
R

The required independence now follows, since (6) is equivalent to
(7)) Pr(A,, (t)=k )-Pr(B (t)=1) = Pr(A (t)=k B (t)=1)
k. =0,1,...
vw

as 'Bv(t) is a zero-one random variable,

(<) Assume that Bv(t) and Avw(t) are independent for every fixed

t 2 0. Then (1) may be rewritten as
(8 &.y,,) = 12,0y, -2, 000 (v, N]op Ty, -11,
<
|y €1

which reduces to
(9 oly,) = o Uy, )1-¢, O0)]op Iy, -11

!val <1,

But
(10) 1 - @t(ov) =1 - Pr(Qv(t)=0) = Pr(QV(t)>0) = Pr(Bv(t)=1).

Hence, (9) becomes
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D e ly,) = 2. (r, IPr(B (t)=1)o p [y -1]

and (11) can be recognized as the z-transform of a Poisson distributed

random variable with intensity Pr(BV(t)=1)ovpvv. ]

Corollary 4.7.4

- Under the conditions of Theorem 4.7.5, {Avw(t)}t20 has fixed inten-
sity iff {Bv(t)}tzo is in equilibrium. Moreover, in this case, the
intensity is G;pvw, where for a recurrent node v 6; é E(Dv(t,t+1])

depends on the initial condition q(0) = q°. g

Remark 4.7.2

Theorem 4.7.5 and Remark 4.7.2 remain true for each departure
m
process D, (t) 2 Z:A..(t).
i e 1j
J=0
It can be shown that the proofs of Theorem 4.7.5 and Corollary 4.7.4

go through for the {Di(t)} This is so, because for each ieM the

t20°

birth-and-death equations for {(Q(t);Di(t))} constitute a combination

t20
of Case 1 and Case 2. ' ' . 1

We are now prepared to point out a subclass of non-exit arcs on

which the traffic process is not Poisson in equilibrium.

Theorem 4.7.6

Let JN = (M,a,0,P) specify a Jackson network in equilibrium. Let
v be a node satisfying :
»
A
a) GV = E(Dv(t,t+1]) >0.
b) 0 < Pyy < 1.

Then {Avv(t)}t>0 is not a Poisson.process.

[

joteid
-
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Proof

Set z; =1, ieM-{v}, in equation (2.b) of Case 2. We obtain

(L &z 5v,) =

) m
(2, (2 3y, )0, * ;Ei[®t(zvsyvv) - 0 (2,,053y,,)105p5 ) [2,-1] +
i#v

. : oyl
(o (2y37yy) - Qt(ov’YVV)]ov(l'va)[E;-- e
[2,(2,5y,,) - 8,005y, Mo p Dy, -1]
< <
0 < Izvl -1 ’ |)’VV| s 1.

Equating the free coefficients on both sides of (1) yields

(2) 3¢ P2(Q,(t)=0,A_ (£)=0) =
-Pr(Q, (£) =0,A (£)=0)a -

m
}EE[PY(Qv(t)=°’Avv(t)=°) - Pr(Q,(t)=0,Q;(t)=0,A,, (t)=0)10;p,, +
j#v

Pr(Q, (1) =1,A, (£)=0)c, (1-p, ) ,

t20. \

If we assume that Avv(t) is Poisson distributed, its intensity

must be 6;p by Corollary 4.7.4.

vv?
Moreover, by Theorem 4.7.5,Avv(t) is independent of Bv(t) for every
fixed t 2 0. Therefore,

(3) Pr(Q,(t)=0,A,,(£)=0) = Pr(B, (£)=0,A ,(t)=0) = Px(B,(t)=0)e VPv¥*

(4) 22 Pr(Q,()=0,A,, (1)=0) = Px(B,(£)=0)e”VPWE(_gTp )

vV
since Pr(Bv(t)=O) is constant in t.
Next send t+0+ on both sides of (2).

By continuity in t of all functions in (2), we may set t = 0 on both

sides of (2). 1In view of (4), the left-hand side (LHS) of (2) becomes

N T I N B T En e

N N aEE W
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*
J P

(5) 1im (LES of (2)) = lim Pr(BV(t)=O)e_ ) =

t *
vV (_6Vp
t>0+ t>0+

vV

Pr(B,(0)=0)(-87p ) < O

because in equilibrium, Pr(BV(t)=O) > 0, due to ¢) in Corollary 4.5.1.
The right-hand side (RHS) of (2) becomes

(6) 1lim (RHS of (2)) = -Pr(Q,(0}=0,A  (0)=0)a, -
t+0+

m
;Eitprcqvc03=o,Avch)=O) - Pr(Q,(0)=0,Q;(0)=0,A,(0)=0)]osp,  +
ity
Pr(Q, (0)=1,A,,(0)=0)0, (1-p, ) =
- Pr(Q(0)=0)ay, - 2L [Pr(Q,(0)=0) - Pr(Q,(0)=0)-Pr(Q; (0)=0lo;p .+

j=1
jtv

Pr(Q,(0)=1)oy(1=p ) =
m

- v‘ = ) - . =
-Pr(Q, (0)=0) [, + ;:;Px(Qj(0)>0)0jpjv] + Pr(Q,(0)=1)0, (1-p,)
j#v
-Pr(Q,(0)=0)6" (1-p,) + Pr(Q,(0)=1)o,(1-p,) .
In the calculation above we used the mutual independence of

Ql(O),...,Qm(O),AVVCO) since Ql(O),...,Qm(O) are mutually independeﬁt

in equilibrium and Pr(AVV(O)=O) = 1.
We now proceed to argue that in equilibrium

6*
(7) Pr(Q,(0)=1) = —X Px(Q,(0)=0)
v

To see this, observe that v is either completely open or recurrent.
If v is completely open, then (7) follows from Theorem 4.5.6vand
Theorem 4.5.1. Otherwise, v is in an irreducible set Rk" From Theorem

4.5.6 and Theorem 4.5.2 we see that for every t = 0

»

(8) Pr(Q (t)=1|#R,=n) = = Pr(Q,(t)=0|#R,=n), n = 1, 2, ...
v

Ly
L

-

L]
L]
oo
L
v

rr
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where #Rk is the equilibrium total customers in Rk‘ Using (8) we deduce

(9) Pr(Q,(t)=1) = ZPr(Qv(t)=1I#Rk=n)Pr(#Rk=n) =

n=1
5
>

=1
2

*

*
O»

8
v
Pr(Qv(t)=0|#Rk=n)Pr(#Rk=n) = 3;-Pr(Qv(t)=0,#Rk % 0),

Q
o < |<

ot 3

But the assumption 6* = E(D(t,t+1]) > O implies that Pr(#Rk>0) =1,
whence (7) follows. Substituting (7) into (6) yields

(10) 1im (RHS of (2)) =

t>0+ *
* )
P3(Q,(0)=006,(1-p ) + Px(Q, (0)=0)5= o (1-pyy) = O
in contradiction with (5).

We conclude that A, (t) cannot be Poisson distributed and hence 1is

not a Poisson process in equilibrium. O

We are now in a position to make

Remark 4.7.3
Under the conditions of Theorem 4.7.6, the departure process
{Dv(t)}t>0 from node v cannot be Poisson distributed. Otherwise, the

Bernoulli switch would render‘{Avv(t)}t>0 Poisson distributed, in con-

tradiction with Theorem 4.7.6. ;|

We remark in passing that the method employed in Theorem 4.7.6
breaks down when attempting to apply it to non-exit arcs which are not
feedback arcs. The reason for this phenomenon is that equation (1.2a)
applies to exit arcs as well as non-exit arcs, so that the topological
properties of non-exit arcs are not captured by it. However, equa-

tion (2.a) does capture the topological properties of feedback arcs
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(which can never be exit arcs by definition), and the desired contradic-
tion can be demonstrated.
We now proceed to identify another subset of non-exit arcs on which

the equilibrium traffic process fails to be Poisson distributed.

Theorem 4.7.7

Let JN = (M,a,0,P) specify a Jackson network in equilibrium. Let
* * A
(v,w) be an arc such that vavw > ||uJ| where 6v = E(Dv(t,t+1]).
Then, the traffic process'{Avw(t)}tzoiis not a Poisson process.
Proof

is a

We already know from Theorem 4.7.1 that (Q(t);A§w(t))t>o

Markov process. By Theorem C.2.1 in Appendix C, the birth and-death

equations of this process are equivalent'to the integral equations
(1) P (W) =P (e ™ +/§:p (e r e vt gy
) 0 d 5 X B v

= , M 2
v (nl""’nm’kvw)
where y ranges over the state space of {(Q(t);Avw(t))}t>o.
From (1) we conclude
(2) P (v) 2 P (v)e™VE,

Next, set v, 4 (0y,...,0 50 ) in (2). Observe that

m’ VW
2:a = [lal|; also Py(v,) 4k > 0, because
- A
P ?v Pr(Q(O) ) = H_(l-pi) = K. Hence,
i=1
(3) Pt(vﬂ) 2 K-édlallt >0 s t20
or equivalently ,
@ Pram)=0;A (1)=0) 2ol lellt s

Now, assume that Avw(t) is Poisson distributed in equilibrium.
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In view of Corollary 4.7.4, we have in particular
-ok t.
(5) Pr(a, ()=0) = ¢ VPV 0 20,

‘Dividing both sides of (4) by (5) yields

. *
(6) pr(Q(t)=0|Avw(t)=0) > K-e_||u|lt+5vpth -
K.e(G;.DVW—I IOLl l)t_>oo
tro
since we assumed G;pvw - ||a|| > 0.

This is a contradiction, since (6) must be bounded by 1. We con-

cannot be Poisson distributed,and thus is not a

clude that {Avw(t)}tZO

Poisson process in equilibrium. O

Remark 4.7.4

An identical argument shows that any departure process {Dv(t)}tZo
or arrival process {A (t)},,,, with 6; > |]a||, cannot be Poisson dis-

tributed in equilibrium. |

We now demonstrate by an example that the class of arcs satisfying

Theorem 4.7.7 and Remark 4.7.4 is not a trivial one.

Example 4.7.1

Consider the Jackson network in Figure 4.7.1. We have that

Ilall = 0y and the traffic equation is
§, = a, + 6
1 1 2

(1
8, = P28y

The traffic solution is

G, Dy 0
1 1271
(6 ,6)= e
128, (q1 a, ).
*
Clearly, s, = a;i> a, = ||a|| whenever 0 < q; < 1.

- e W
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o
1
Aex(t)
1 A21(t) <
A (t) |, pél
1 . ,K)z(t)
s
2
1 2
81
Y
Dl(t) Az(t)
12 )
<} Alz(t)
Alo’(t) :
Y

Figure 4.7.1: A Jackson Network with Arcs Satisfying
Theorem 4.7.7 and Remark 4.7.4.
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Thus, by Remark 4.7.4, {Dl(t)}'is not a Poisson process in equili-

brium nor is the arrival process {Al(t)}tZo’ where Al(tj & A;x(t)+-A21(tl

Furthermore, if I L then by Theorem 4.7.7 neither {Alz(t)}tzo nor
{A21(t)}t20 can be a Poisson process in equilibrium.

Indeed, all the above are non-exit arcs. The only exit arcs are
the inlet arc (0,1) and the outlet arc (1,0), on which the traffic

processes are Poisson in equilibrium, due to Corollary 4.7.3. O

We note in passing that an exit arc (i,j) never satisfies
Gipij > ||a|'. It suffices to show this for outlets of the network
since every exit arc is an outlet of some partial network. ‘But this

_ m m m
follows immediately from the identity X a, = Z&iqi 4 :Gipio
i=1 i=1 i=1

(see Theorem 4.4.4).
As a closing remark we conjecture that Theorem 4.7.6 and Theorem

4.7.7 can be extended to arbitrary Jackson networks in accordance with

Conjecture 4.7.2.

I . 2 1) - . > ;- = - "



CHAPTER 5

SIMPLIFICATIONS OF JACKSON QUEUING NETWORKS

5.0 Introduction

Simplifications of queuing networks fall within the scope of the
general conceptual framework outlined in Appendix B.

Simplifications of queuing networks are motivated by the consider-
able analytical complexity frequently encountered by the investigator.
As a matter of fact, in trying to extract stochastic properties of
queuing networks, one often finds the problem to be analytically intrac-
table. Consequently, it becomes necessary to resort to computer simu-
lation. However, the computer complexity of such simulations (i.e.
the requisite computer resources) could often render a simulation pro-
hibitively costly or even impossible.

Thﬁs, conditions for simplifications that reduce the concéptual
complexity, simulation complexity, etc. are of interést at both the
theoretical and applied level. |

The organization of this chapter is as follows.

Sections 5.1 - 5.3 investigate three classes of simplificationé
that take Jackson networks into Jackson networks (recall that all the
networks alluded to are always assumed to have single server nodes).
These are the so-called F-gimplifications (which remove feedback arcs
from nodes), A-simplifications (which remove all arcs among a subset
of nodes), and L-simplifications (which lump a subset of nodes into‘a
single node). |

Section 5.4 discusses simulation complexities of Jackson networks.

Two types of such complexities are treated: time complexities and
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space complexities. Finally, we compare the effect on such complexi-
ties under the three classes of simplifications above.
The reader is referred to Appendix B for a description of the

underlying framework and for further orientation.

5.1 F-Simplifications

An F-gimplification (feedback simplification) of a node i takes a
Jackson network JN = (M,%,0,P) into a Jackson network JN' = (M,u';c',P')’
subject to

1) pij = Py for any keM-{i} and 0 £ j = m.

A 0, ifi=j
2) Ifp;; <1, then Pio=1
o if 3£ 5.
1-pi;
3) If p;; =1, then P{j = Pij 053 <m.

In other words, F-simplifications eliminate feedback arcs in Jackson
networks (see Figure 5.1.1), excluding the triwial case Pii = 1.

It will be shown that certain F-simplifications preserve the dis-
tributions of the state and traffic processes. To do this we use
measure preserving point morphisms (see Ch. 3) in coordinate probability
space (see Ch. 2). We are justified in taking a coordinate space
representation because the probabilistic structure in terms of distribu-
tions does not depend on the sample space representation.

The fact that enables us to use system-theoretic models for coordi-

nate sample points is contained in
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Lemma 5.1.1

Let S = ¢(Q,A,P> be the coordinate probability space of Example
2.5.3 corresponding to a Jackson network. Let N(w) be the state-DEVN
associated with a coordinate sample point weQ. Then, for almost every

wefl, the state-DEVS MN(w) of Example 2.5.3 is regular.T

The underlying stochastic processes of a Jackson network are
finitely many and mutually independent Poisson prbcesses. The Lemma
follows (see [D1] p. 401) because each of these processes is conserva-
tive (has almost surely finite number of jumps in every finite interval).

O

We start with a F-simplification of a M/M/1 queue with feedback.

Consider the F-simplification in Figure 5.1.2. This F-simpli-
fication takes the M/M/1 queue with feedback and maps it into a M/M/1
queue. The arrival parameter is unchanged but the new service parameter
is o' = qo, where ¢ is the old service parameter and q is the proba-
bility of leaving the system. The quantity p is the feedback probabil-
ity and it assumed that p + q = 1. |

Consider the coordinate probability space S = <@,A,P) of Exaﬁple
2.5.2 for the base queue, and the coordinate probability space
S' = &',A",PD> of Example 2.5.1 for the lumped queue, both in Figure 5.1.2.

Let us define a map H:Q = Q' as follows:

-] =]

st Ttk

and define a sequence of random variables'{Zj}.mo

Let w = (20’{aj}j= { )EQ”’

almost everywhere on

Q by

TSee Definition 1.2.7.
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0, ifj =0
A Zj(w) £ Imintk: k > Zj_l(w) and Vk(m)=0}, if the minimum exists

undefined, otherwise

Z, is the index of the j-th zero in {Vj}jzl’ i.e. in an infinite

J

sequence of Bernoulli trials.

Now, define H(w) = w'eR' such that
A © ® | ' Zj (w)
(B) w' & (20,{aj}j=l,{s§}j=l} where sj = S5

i=zj-1 (D)“‘l

On the null set of Q for which {Zj}jZO is undefined, we define H arbi-

trarily.

Theorem 5.1.1

The map H above is a measure preserving‘point morphism (m.p.p.m.).

Proof
We show that the sufficient conditions of Theorem 3.1.1 in Chap-
ter 3 are satisfied for H.
H is clearly surjective (but not injective) because for every
w'eQ' there is at least one we such that_{sj}j:1 has the represen-

. Z3(w)
tation S, = S.
J iajzg__—(._ W)+t

Jj-1
A ,
Let Y' = {Lé,A!,Sé: j=1,2,...} be the obvious projection functions

on the coordinates of w'eQR' (see Ch. 2, Sec. 2.4). Then V! genefates

A' in S' by definition of S' (see Ch. 2, Sec. 2.2), and condition a) of

Theorem 3.1.1 is satisfied. Likewise, let G 2 {LO,Aj,Sj,Vj: j=1,2,...}

be the generator set of S (see Definition 2.4.1).
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-3

By definition of the sequence {zj}j=0’

the Zj—Zj_ are mutually

1
independent, identically and geometrically distributed with common

parameter q.

Define a sequence of random variables {§jf§_1 over S by
Z;(w)

5. (w) é 2-" Si(w) almost surely.
J 1=2, 7, ()

Then the §j are mutually independent and identically distributed with a

common Laplace-Stieltjes (LS) transform f£(z). Moreover, if we let

g(z) £ E%E- be the common LS transform of the service times {Sj}jzl’ we
can write '

(1) f£(z) = qglz) + qp82(c) + quga(c) + ... 0=

9q
g+oq °

0 n_ 1 _
qg(c)zz:(pg(c)) = qg(C)1-pg(c) -

n=0

Consequently, each Sj is exponentially dist;ibuted with parameter qo.

It follows that ¥ & (LA ,8;7 1,2, } and yr & L,AL,S1: 5212, )
are distribution equivalent since the one-dimensional distribution func-
tions are identical, and both sets consist of mutually independent random
variables. lThus Condition b) in Theorem 3.1.1 is satisfied.

To verify that condition c¢) of this theorem also holds we note that

(2) Lo(m) = 20 = LB(H(m)) almost surely
(3) Aj(w) =a = A%(H(m)) almost surely
and finally from (B)
Z; ()
(4) §j(w) = __:E::: s; = sj = Sj(H(w)) almost surely.
1-Zj_1(w)+1

We conclude from Theorem 3.1.1 that H is a m.p.p.m. as required.
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A few comments regarding the simplification aspects of H are
warranted at this point.

In the terminology and the conceptual framework of Chapter 3
(Sec. 3.2),.ShE>S' is a stochastic point simplification, since H was
shown to be a m.p.p.m. The lumping effect of H at the sample space
level is evident. The map H eliminates the last component of w by
lumping the service sequence {s.}. . and the switching sequence {vj}j:1

373=1
into the new service sequence {sé}jzl as given in (B). The matching
operator H of Definition 3.3.1 sends the set ¥' to the set Y in Theorem
5.1.1. The essence of H is captured by the observation that the service

times {§.}.". and {s'}.”
m i =1 {8535.

-, are identically distributed, because the total

service time awarded between departures in the base queue is distributed
as a single service time in its lumped version. We also have the fol-

lowing relation at the sample point level.

Theorem 5.1.2

Let M(w) be the state-DEVS associated with weQ in D) of Example
2.5.2,and let M(H(w)) be the state-DEVS associated with H(w)eQ' in
D.1) of Example 2.5.1. Then for almost every we®, M(dﬁJM(H(w)vaia a

TC-DEVS state-homomorphism (i,L;h).++

Proof

Let w be such that M(w) and M(H(w)) are regular and {zj(w)}jzl,is
well-defined. For such fixed w, denote Zj(w) 4 zj, j = 1,2,.f

For any s = (z,n,vn,r)asw; there is a (unique) j=j(n), such that

< . a A . L& b
zj_1 <n < zj. Taking Sw = Sw’ we deflne'h.sw-——> SH(w) y

t7J is the transitional covering relation (see Definition 1.4.2).
ttSee Definition 1.4.4.
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0, j, =, if 2 =0

(1) w(,n,v,7) 2

Z.
J

2, j, r +‘Z: s{), if2>0
i=n+1

where j e j(m).
Note that in s = (z,n,vn,r)esw, 2 represents line size, n the current
customer, v, the current switch position, and v the residual current
service time. The interpretation of components in s' = (2',@',r')eSﬁ(w)
is analogous.

Note that the map ¥ is surjective because every 0 < r' < s! has a

unique representation

23

(2) r' =1+ ‘:E: s; for some n‘satisfying‘ 2y, <M Sz
i=n+l
Next, define for any s 2 (2,n,vn,r)esm
[0, if ¢ =0
L(s) &

z.-n,if £ >0
]

where j 4 j(m). It follows that

®, if 2 =0 L(s)

(3) 40 (HLs)) = 2, = 12‘6 2,8, ,(s,1)).
T+ oy s, if 2> 0
i=n+l

Also, for s & (2,n,v_,r)eS with £ > 0, and denoting j &5,

(4 -n(&w’¢(s,L(S)+1)) = ﬂfgw’¢(s,zj-n+1))

h(o’zj+1’VZj+1’w3’ ifg=1

h(z—l,zj+1,vzj+1,szj+i), if 2> 1

(0,j+1,=), if 2 = 0

= ey L ((S)) .
(Z'l,j*1,55+1), ife>0 H{w),¢
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. ) A A < ~
Finally, for any seSm and 0 < 1 < tH(w)(h(s)), represent

. . . n
S = (z,n-k,vn_k,r) and 1 =T +i£E;;EISi-d, provided j(n-k) = j(n)

Let (s,e) 4 GG((§,O),¢T) where GG is the transition function of G(M(w))

ne>

i

(see Lemma 1.4.1); hence s = (l,n,vﬁ,r) and e = r-d. Then, i

h(l,n,vn,sn), where n = z, +1, if 2 =0
(5) M8, 4((s,e),1)) = - _
ﬁ(2+1,n,vn,r—e), if 2 >0

2.
. J
(1’j’ s') ’ if 2’ = 0
igg;::+1 1
J-1 =
2.
(2+1,j,7- e+ Zﬂ s.) , if 2 >0
i=n+1 T

(1’j:5:}) » if2 =0

Z
(a+1, j, d + Zf s;) , if2>0

i=n+1
6H(m) ,M(((O,j,‘”),'f),l), if e =0
3 = Sy (@)D, D).
8wy m(((Ls3, ;i%;%;lsi),T),l),if 2 >0

From (3), (4) and (5) we conclude (see Definition 1.4.2) that
M(w) JIM(H(w)), and this is true almost surely due to Lemma 5.1.1 and

by definition of {z,}.7. 0

Comment 5.1.1

In particular STRAJq :]STRAJq via (i,h) where
w’ M H(w) , "H(w)

h(s,e) é (h(s),hz(s,e)), by Conclusion 1.4.2. To see this we note that
n.o=n 8 3 1
W H{w) j=1 aj

(lo,l,vl,w), if 2 =0

Furthermore, qQ, = (50,0) where Sy = _
(zo,l,vl,sl), if 2 >0
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(2,,1,%), if 2=0
and q = (s!,0) where s! =
H(w) 0 0 (8,,1,8)), if 2> 0 .

Finally, h(qw) = qH(m)’ because‘ﬁ(so) = sé and h2(so,0) = 0. O

Having established the fact that H is a m.p.p.m. such that
M(w) IM(H(w)) almost surely, the next step is to cheek the scope of

H
preservation of behavioral frames under the point simplification Se—>S',
Theorem 3.2.1 is used as a sufficiency criterion for preservation

in the sense of distribution equivalence, in the following theorems.

Theorem 5.1.3

Suppose an L-simplification of an M/M/i queue with feedback
JN = ({1},0,0,p) yielded a M/M/1 queue JN' = ({1},a,0q,0) where q =1 -p

(see Figure 5.1.2). Then the L-simplification JN p—> JN' preserves the

state process, provided the initial states are distribution equivalent.

Proof

Let'{Qt}tZO and {Q{},>  be the state processes in the base queue and
lumped queue, respectively, of Figure 5.1.2,
For we © such that M(w) and M(H(w)) are regular and {Zj}j:0 is well-

defined, let OTRAJ and OTRAJ be the '"line size'" output
%, U (w), "H(w)
trajectories of STRAJ and STRAJ respectively. That is
%, " UH(w) , ™ (w)

(1) OTRAJ, . (8) = A(STRAT, (1)) = A((2,m,v,,7) ,e) £y

w, w qw, W

(2) OTRAJ (t) = A'(STRAJ () = xcczzn',r‘ze') g,
M (w) , "H(w) W (w),"H(w)

Now, for any t 2 0

o

o
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(3) Q. (w) = OTRAJ (t) and Q'(li(w)) = OTRAJ (t).
t A, t W (w),"™(w)

Since STRAJ ZJSTRAJ via (i,h) by Comment 5.1.1, it

qw,nw qH(w),nH(w)
follows that in particular
(4) h(STRAJ (t)) = STRAJ () s t 20

Uy, N U (w) ,™H(w)

where h = (hl’hz) = Cﬁ,hz) and N is defined in (1) of Theorem 5.1.2.
But by (1) in Theorem 5.1.2

(5) #(&,n,v ,7) = (',n',x") == £ = &'

whence by (1) and (2)

(6) OTRAJ (t) = OTRAJ (t) s t20.
9, U (w),"H(w)

From Lemma 5.1.1 and by definition of {zj}j:0 we conclude that for
almost every weQ
(7)) Q.(w) = Q(H(w)) , t20 almost surely

whence by Theorem 3.2.1,{Qt}t>0 and {Qé}t>0

O

Corollary 5.1.1

The busy and idle period processes are also preserved under the

F-simplification of Theorem 5.1.3. M|

Theorem 5.1.4

The departure process is preserved under the F-simplification of

Theorem 5.1.3, provided the initial states are distribution equivalent.

Proof

Let {Dt}t>o and {Dé} be the departure counting processes in the

t20

base queue and in the lumped queue, respectively, of Figure 5.1.2. For

we be such that M(w) and M(H(w)) are regular and {Zj}j:0 is well-

are distribution equivalent.
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defined, let OTRAJ and OTRAJ N be the ''departure count"
_ w, "W U (w), "H(w)
output trajectories of STRAJ n and STRAJ respectively.
’ w, W qH(m),nH(w)

That is,
» A .

1 OTRAJ t) = A(STRAJ = A(Z,n,v_,r),e) = j-1
(1 gy, (O T ©) = A0
where j = j(n) satisfies Zj_l(w) <n < Zj(w), and
(2) OTRAJ (t) = A(STRAJ (t)) =

U (w),"H(w) UHw) , "H(w)
Ar(e',n',r'),e") A n'-1.

Now, for any t 2 0

(3) D, (w) = OTRAJ (t) and D!'(H(w)) = OTRAJ (t).
t G, t U (), "H(w)

By Comment 5.1.1 it follows that in particular

(4) h(STRAJ (t)) = STRAJ , tz0
9, N,

t
w, U (w) ,nH(w)( )

where h = (hl’hz) = Cﬁ,hz) and I is defined in (1) of Theorem 5.1.2.

But by (1) in Theorem 5.1.2

ne

(5) *m(e,n,v ,r) = (@',n",r') =p n' = j(n)
where Zj_l(w) <n < Zj(w)

Hence, by (1) and (2)

(A
o

(6) OTRAJ (t) = OTRAJ (t) , t
9, N U (w), "H(w)

From Lemma 5.1.1 and by definition of {Zj}j:0 we conclude that for

almost every we

(7) Dy(w) = D! (H(w)) , t20

and {D'} are distribution equivalent.

whence by Theorem 3.2.1, {Dt}tZO tfezo0

Theorems 5.1.3, 5.1.4 and Corollary 5.1.1 agree with related results



234

in [Dal] where F-simplifications of a large class of single queues with

feedback are investigated. It is possible, however, to extend these

results in a different direction, namely to arbitrarily connected Jackson

networks with single server nodes.

Theorem 5.1.5

Let JN = (M,a,0,P) be any Jackson network with single server nodes.

Suppose an F-simplification is performed only on each node iegM with
0 < Pyy < 1, such that the resulting lumped network JN' = (M,a,c',P')
satisfies (see Figure 5.1.1):

1 = - <4 =
a) o} oi(l pii) , 1 i sm.

Ds s
1—:11)—3-— , ifi#j, 1Sism 05jsSm
' - .
b) pij ii
0 , ifi=3j ,1<i<m.

Then, the state process and each traffic process on a non-feedback
arc are preserved, provided the initial states are distribution equiva-

lent.

Proof
Since the proof is analogous to the one for the F-simplification

of Theorem 5.1.3 (see Figure 5.1.2), only an'outline.will be given.
Consider part D) of Example 2.5.3. As usual, S =<Q,A,P> and

S' =<4Q',A",P') denote the coordinate probability space of the base

network and the lumped network of this theorem. First, we define a

m.p.p.m., H:8 -——3 Q' as follows. Let

-] [><] [=4]

} {Si,j}j=l’ {Vi,j}j=1: i=1,2,...,m)eQ

(1) w-= (zo,i’ {ai,j j=1°
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For every i = 1,2,...m, define a sequence {Zi .} * of random variables by

s) j=1
Jo-if5 =0
(2) Zi,j(w) =(min{k: k:>zi,j-1(w) and Vi,k(“D #£1i}, if the‘minimum exists.

undefined, otherwise

Note that the Zi i Zi 5-1 are mutually independent, and for every

fixed i=1,2,...,m they are identically and geometrically distributed with

common parameter 1 - Py;- This is so, because Zi 3 is the index of the

Rt |

j-th non-feedback switching decision at node i, where the sequence of
switching decisions constitutes an infinite sequence of multinomial
Bernoulli trials. Now, the sequences {Zi,j(w)}jzl are almost surely
simultaneously defined.

For such wef, define H(w) = w' where
A w

(2 {a, .} {s! .}

| had .
() wt = 0400 125505200 115 5m0 Wiyl

where for any j = 1,2,...
23,3

-{4) s! ., = :E:: S. and Vv! . =v

1,] i,n i,j i,Z, . (w)
n=Zi’j_1(Qj)+l’-

On the null set of & for which the {Z, .}.”. are undefined, H is defined

i,j73=1
arbitrarily. Thus, H is surjective because every sequence {si j}jfl and
,jTi=1
{vi j}jfl has at least one representation as in (4).
,jj=

A . . .
' = ! M 5 S 1 = .o -

Let V¥ _{Li,o’Ai,j’Si,j’Vi,j isism,j=1,2, } be the obvi

ous projection functions on @'. Then Y' generates A' in §' (condition a)
of Theorem 3.1.1).

Finally, let G & {L 15i€m j=1,2,...} be

. SAL L,S. LV, .
| 1,071,3°71,3° 1,7
the generator set of S, and define a set of random variables

y & {L. L,A. .,S V. .:1<2i<m j=1,2,...} over S where

i,0*"i,j’i i,j
Z
A zi 7 ‘
(5) Si,j = Sn and vi,j vi,Z - almost surely .

»3°
h=zj 1+1 i,j

e

o
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[
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A calculation similar to (1) of Theorem 5.1.1 reveals that each pair

éi ; and Si ; has the same exponential distribution with parameter
»J ’

ci(l—pii). Moreover, each pair V. . and Vi j has the same distribution,

»

1,]
as for every fixed 1 £ i <€ m, both Vi . and V! j correspond to a multi-
3

s J

nomial Bernoulli trial that assumes values in the set {n: neM-{i}}

with probabilities
&) PrF. ,=m) = Pr(V! .=m) = pi_ - —iD
i,j 7 o 1,577 T Pin T T,

We can now conclude that ¥ and Y' are distribution equivalent

(condition b) of Theorem 3.1.1), because they consist of mutually
independent random variables. Finally, condition ¢) of Theorem 3.1.1

is verifiable as in Theorem 5.1.1.

This establishes the fact that H is a m.p.p.m. from S to S'
according to Theorem 3.1.1.

Next, we expand each N(w) into MN(w) and each N(H(w)) into Mﬁ(H(m))
(see Ch. 1, Sec. 1.1), and compare the state trajectory representations
of w and H(w) at the DEMS level. It again follows that for almost every
are regular state-DEVSs.

L\)EQ, and M

M 2 M)
To verify that the state and traffic processes are preserved we
merely make the féllowing observations.

First, it can be shown that for each a, 1 5 a =m, we have
Ma(w);j Ma(H(w)) almost surely, as in Theroem 5.1.2. Thus, departures from
each component Mu(w) are concurrent with those of Ma(H(w)) almost surely.
Furthermore, the switchings in Md(H(w)) were set up so that departures
along each non-feedback arc are also concurrent, almost surely.
Consequently, MN(uDjj MN(H(m)) in such a way that line sizes and

traffic along each non-feedback arc are identical for almost every

wefl, because the initial line sizes are identical.
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This completes the outline of proof for this theorem. ]

We remark that Theorem 5.1.5 can be verified directly by writing
the birth-and-death equations of the state process augmented by any sub-
set of traffic processes, and observing that the same equations ensue.

However, the merit of stochastic simplifications via measure pre-
serving point morphisms is twofold. First, it provides considerable
intuition and insight into §implifications because it enables the user
to employ system-theoretic tools and principles which are inherent in
queuing systems. Second, Theorems 3.1.1 and 3.2.1 (which provide the
basis for stochastic point simplifications) are rather general and are
not restricted a priori to a certain class of stochastic processes.

It should also be pointed out that once a m.p.p.m. is found, one
may test its scope of preservation via the sufficiency conditions of
Theorem 3.2.1. Furthermore, using system-theoretic tools, these condi-
tions can be readily tested by comparing queuing histories and observing
the behavioral frame df interest. In our case, we saw that the existénce
of H allowed us to conclude that behavioral frames such as line sizes,
traffic process, busy and idle periods etc., which require no informa-

tion concerning customer identity, are all preserved.

It is natural to ask whether customer-oriented behavioral frames
such as waiting times and transit times are also preserved. First, we
point out that such behavioral frames cannot be defined 6n representa-
tions of sample points w which are derived from the associated DEVS
M(w). The reason is that the M(w) model does not contain information
regarding individual customers, because the % components of its

sequential states retain line size rather than line configuration
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M(m)

TM-DEVS . TC-DEVS
state-homomorphism state-homomorphism
M(w) M(H(w))

TC-DEVS TM-DEVS
state-homomorphism _ state-homomorphism
M(H(w))

Figure 5.1.3: System-Theoretic Relations Engendered by the
F-Simplifications of Figures 5.1.1 and 5.1.2.
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(see Examples 2.5.1 - 2.5.3). Consequently, a more elaborate model
M(w) has to be associated with every w, whereby the % compbnent is re-
placed by a ¢ component where c is an ordered string of customer tags
which describes the line configuration (see Examples 1.1.1 and 1.1.2).

. On comparing M(w) with ﬁ(H(w)) and the state trajectories that
they engender under the F-simplification of Theorem 5.1.3, one observes
that condition a) of Theorem 3.2.1 cannot be verified for waiting and
transit times. This stands in agreement with the facts found in [Dal].
There is no reason to believe that customer-oriented behavioral frames
are preserved in the F-simplification of Theorem 5.1.5 either.

‘We conclude this section with some system-theoretic remarks.

The DEVSs M(w) and M(H(w)) are more complex and contain more in-
formation than M(w) and M(H(w)) respectively. This explains why cus-
tomer-oriented behavioral frames are relatively difficult to derive.

It can be shown that there is a TM-DEVS state-morphism (g;h) from M(w)
to M(w) such that S=5 (see Definition 1.5.2). The effect of the map %
on the sequeﬁfial states of ﬁ(w) is to lump the c-component into a
%-component such that |c| = & where |c| is the length of the string c.

Figure 5.1.3 summafizes the system-theoretic properties of H and
the relations among the DEVS models associated with coordinate sample

points engendered by the F-simplification of Theorems 5.1.3 and 5.1.5.
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5.2 A-Simplifications

In the rest of the chapter we shall adopt the following notation.

Let JN = M,a,0,P) be a Jackson network with single server nodes.

A u A A%
As usual we write Pig = 1 - .Zpij =q; and Py = . | | || is the
j= el
norm of (A) in Sec. 4.3 while | -] is used as the cardinality symbol.
For any i,jeM and C,D C MU{0} we write p(i,C) 4 Zpij and
jeC
.y A . . cqsas .
p(C,i) = Z:pji for the switching probabilities from i to C and from C
jeC ,
to i, respectively. We shall also use the notation §(i,3) A 8

iPij
for the expected equilibrium traffic rate on arc (i,j). Likewise, we

shall use §(i,C) & 226(i,5), sC,i) & 556(j,i) an
jeC jeC

§(C,D) a Z EG (i,j) for the expected equilibrium traffic rates from
ieC jeD

i toC, from C to i, and from C to D, respectively.

Finally, complements of C C M will always mean complements of
MU{0}, i.e. € & MU{0})-C. We shall often deal with partitions
I = {CSL}!LeL of the node set M, in which case the CR will be referred‘
to as blocks of the partition II.

A A-gimplification (arc simplification) of a Jackson network
operates on a subset of nodes C, to the effect of removing all arcs
among all nodes in C (see Figure 5.2.1). Formally, it takes
JN = M,a,0,P) into JN' = (M,0',0',P') such that
1) p

=p for any i¢C and 0% j Sm.

ij
0 for any ieC and jeC .

1
1j

2) py;

It

In this section, we shall be interested in A-simplifications that
preserve distributions of equilibrium line sizes and the total service

time obtained by a customer in a subset of nodes C.
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Theorem 5.2.1

Let JN = (M,a,0,P) be an open Jackson network. Let CC M satisfy
p(k,C) > 0 for all %eC. Suppose an A-simplification was performed on
C (see Figure 5.2.1), yielding a Jackson network JN' = (M,a,0',P') where

a) for any i,jeM

0., if igC
A 1
' = -
(@195 = 15 53,8 , if icC
pij , 1f i¢C
(a.2) Py 8) 0, if ieC and jeC
Pij
= . if ieC and j#C
p(i,C)

Then, the A-simplification above gives rise to a new traffic solu-
tion &' satisfying

8;, if ifC

(b) 8! =; ,  VieM
§(C,i), if ieC
and
(c) e} =p; , VieM
iff

(d) 8(C,k) = skp(k,é) , VkeC ,

Proof

( =) Suppose that (b) and (c) hold.

From (a.1) and (b), it follows that

5! -
k §(C,k)
.. S
(1) pk Gl'( O'kp (k,E') > Vkec .

Applying (1) to (c) gives us

o
oy S 8K

—, vkeC
% o pk,C)

~ -
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whence (d) immediately follows.
(¢==) Suppose that (d) holds.
We show first that ' as given by (b) satisfies the traffic equa-

tion of JN'. Taking note of (a.2) and (d) we have :

(4) For ifC,

a; + &8.p.; + 25 8(C,3)

jgc It jeC ( )

i =0, 4 S:G' + 2: 'p!

J¢C J jeC j J1

{* a8ipes + 2.6.p(3,0) Z: P

j#C R E jeC ] (J,C) j=1 731 7 1

Since the traffic solution is unique for an open Jackson network,

we conclude from (3) and (4) that Equation (b) is perforce the traffic

solution of JN'. Finally, using (a.l1), (b) and (d) gives us for every ieM,
8 .
.\, if if
o8 CH ,
(5) Dl = E;-— =
8(C,i) .
-C;i—p(—m, 1f ieC
4
— , if igC
5 5
= =—]:“-= o)
8;p(i,0) 9 !
—  if ieC
5P (.0 if ie
i
as required. , ]

Corollary 5.2.1

If the A-simplification JN = JN' of Theoiem 5.2.1 satisfies con-

dition (d), then JN has a state equilibrium iff JN' does. Moreover, in

[t
=
L
prn
T
[ fq)
<
.
o
e
r
[ e



244

this case the equilibrium state distributions are identical. ' 0O

Condition (d) of Theorem 5.2.1 can be equivalently stated in terms

of node parameters in C only as follows.

Lemma 5.2.1

The condition
(a) ¢8(C,x) = 6kp(k,é) s VkeC
is equivalent to the condition

(b) 9o(C,k) = ka(k,C) , VkeC .

Proof
By definition we can decompose for every keC

(1) 6k = §(C,k) + §(C,k)

(2) 1 =p(k,0) + pk,0).

Hence, for every keC

(3) 8 = 8. [p(k,C) + p(,8)] = 8, p(k,C) + & pik,0).

From (1) and (3) we conclude that (a) holds iff (b) holds. O

The equivalent conditions (a) and (b) of Lemma 5.2.1 are conserva-
tion equations which assert that in equilibrium, the expected traffic
rates through the nodes of C are balanced with respect to C. In other
words, condition (a) requires that in equilibrium, the expected traffic

rate into each node keC from the nodes outside C (including the exogenous

input) equals the expected traffic rate from keC to the nodes outside C. .

Likewise, condition (b) requires that,in equilibrium, the expected traffi-

rate into each node keC from the nodes inside C equals the expected



245

traffic rate from keC to the nodes Zmside C. This is a stronger
balance condition as compared to the balance condition postulated by the
traffic equation,whereby the expected traffic rate into a node equals
the expected traffic rate out of it, in equilibrium.

Theorem 5.2.1 also enables us to make the following extension.

Theorem 5.2.2

Let JN = (M,0,0,P) be an open Jackson network. Let II = {Cl}2€L
be a partition of M, such that
(a) p(k,ﬁz) >0 , whenevér keC,
Suppose the A-sihplification of Theorem 5.2.1 was performed on each Coell.
Then, the A-simplification above gives rise to a new traffic solu-
tion &' where

(b) Gi G(Cz,k) , whenever keCZ

and
1 - 3
(c) CH CI VieM
iff

(@) 8(C,,k) = 6,p(k,E,) ,  whenever kecg.

Proof

(=) Necessity is proven exactly as in Theorem 5.2.1, as every
keM is in some CzeH.
(€==) The A-simplification of this theorem can be obtained by suc-

cessive A-simplifications of the C2 (simplification procedure) as follows:

N N D) — - an (LD gy

- It follows from Theorem 5.2.1 that at each stage we obtain a Jackson

network JN(n) whose traffic solution B(nJ satisfies for every ieM,

[y
-
™
Fon
o3
e
“n
o
L

proen’

™

L]
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s(n-1) if ieC
1 L
(n) _
(1) Gi =
s MM e ,i)  Af deCy
It is easy to see by induction that on setting 0 = 1L! in (1), con-

dition (b) follows. Condition (c) holds,because the p parameters
n-1 n
remain unchanged at each simplification stage JN( ) *""’JN( ) due

to Theorem 5.2.1. a

Since the preservation effect of the last theorem depends on condi-
tion (d) of Theorem 5.2.2 (which is derived from the base network speci-
fication), we now proceed to give a set of structural conditions that

imply the behavioral condition (d) above.

Theorem 5.2.3

Let JN = (M,o,0,P) be an open Jackson network. Let II = {CR}ZEL
be avpartition of M, such that for each fel, |
(a) p(Cz,k) = p(k,Cl) , VkeCQ.

(b) p(Cz,k) = const., VkeCn, VCneH .

(c) ) = comst. , VkeC.

Then, for each felL,

(A 8(E,,K) = 8,p(k,Tp), VkeC,.

Proof
We show first that conditions (b) and (¢) imply that for each fel,
(1) 6k = const. , VkeCZ,

By Corollary 4.4.2

[o2)
(2) 6 = ay P"
n=0
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Now, the set

(3) k(m 2

m, o
{v = (vl,...,vm) e R": for each feL, vV, = const., VkeCQ}
is a linear subspace of RM. It can be directly verified that K(I) is

invariant under linear transformations whose matrix representation is a

- mxm matrix satisfying condition (b).

Hence, since aeK(ll), it follows that

(4) oP"ek(M) ., n =0,1,...

and from (2) we conclude that (1) holds, as K(I) is complete.

Now, condition (a) can be written for each %2eL as

5) X Pyy = P Pj - VkeC, .
JEC2 JGCQ

In view of (5), Equation (1) allows us to write for each leL;

6 2 8.Pi = 2 & Pps VkeC, .
: 37 : J
JECR JGCZ

But Equation (6) is by definition for each %el,

(7) G(Cz,k) = ka(k,Cz) , 'VkeCl

and (7) is equivalent to condition (d) by Lemma 5.2.1. . 1

Finally, we observe

Corollary 5.2.2

Let II = {Cz}zeL be a partition of the node set of an open Jackson

network JN = M,a,0,P). If for each fLeL,

a) ij = ij > Vj,kECl
b) Pij = Piyp s VieM | Vj,keCz
c) o, = const. , VkeCE

then conditions (a), (b) and (c), respectively, of Theorem 5.2.3 hold;

hence, condition (d) of Theorem 5.2.3 is also satisfied. M

o=

ot

-
L
A
[T
o
T
o
rr
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We now proceed to discuss A-simplifications that preserve the
total service time obtained by a customer from a subset of nodes. More
precisely, §k,c will denote the sum of service times obtained by a
customer that enters a given subset of nodes C at node keC, till the
first departure from C (cf. Ch. 4, Sec. 4.6,where the case C = M was

investigated).

Theorem 5.2.4

Let JN = (M,a,0,P) be a Jackson network and let C C M. Suppose
the A-simplification of Theorem 5.2.1 was performed on C.

Then the total service time in C is preserved (in distribution) iff
(a) okp(k,ﬁ) = const., keC.
In this case, the gk’c are exponentially distributed with common param-

eter okp(k,C).

Proof

Let f (z) be the Laplace-Stieltjes (LS) transform of S keC.

k,C?
Let vk(c) be the LS transform of the service time Sk at node keC, viz,
'S
E+oy
The £, (€ satisfy the equation (cf. (3) in Theorem 4.6.1)

@ £ @ = pUDv ) + Zpy v, (©F (@) .
jeC

0 Vk(C) E , keC.

We show first that the Sk,C are identically diétributed iff (a) holds.
Suppose the §£,C are identically distributed with the same LS transform
(3 £() = £(c),  keC.

Setting (3) and (1) into (2) gives us

4) £@) = pk, C) Zka E-;U; £(2) »  keC,

- aE s
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Solving (4) for f(z) yields
p(k,C)o
(5) f(g) = —————omn s keC .
C+p(k,C)0k
Thus, whenever i,jeC,
p(i,8)o, p(3,0)o,
6) (&) = ———" = ———I 20
C+P(1:C)Ui C+P(J,C)Uj‘

whence p(i,C)oi = p(j,C)oj for any i,jeC,so that (a) follows.
Conversely, suppose okp(k,ﬁ) = const., for all keC. Define
0, p(k,C)

(M £ & ——n
;+okp(kxc)

= (1) s keC .

It is easy to verify by direct substitution, that the fk(;), keC, in (7)
satisfy Equation (2). Moreover, Theorem 4.6.1 implies that this is the
unique solution for (2), so that fk(c) = £(z) for all keC.

We note that, in particular, (a) ensures the §£,C, keC, to be
exponentially distributed with the common parameter ckp(k,C), keC. The
theorem follows from the observation that the nodes in C in the simpli-
fied network are disconnected, so that the new gi’c coincide with the

new service times S!, for all keC.

5.3 L-Simplifications

A L-simplifieation (lumping simplificatioh) of a Jackson network
operates on a subset of nodes and lumps it into a single node (e.g. Fig-

ure 5.3.12. Typically, one partitions the node set of a Jackson network

IJN = M,a,0,P) vi it =
™, ) via some partition I = {Cz}zeL’ and then one proceeds to

lump each block Cz into a single node 2, thus obtaining a new Jackson

network JN'" = (L,a",o",P"). This situation will be referred to as a

[t
=

=
L
¥
£
-
e
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r

e
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L-simplification of JN with respeet to ﬁ.

Now, suppose that the matrix P is strongly lumpable with respect
to T, or equivalently (see [KS1], p. 124)
(N pGi,C) =p@G,C) ,  VijeC,,  VC,,C el.
In this case, one can define the switching probability from CZ to Cn as
the common value above, viz.
() »p(c,.c) & p(k,C) C,,C el
where k is any representative node in CIL‘

If a partition Il gives rise to condition (A), then I will be called
a strongly lumpable partition of P.

In this section we shall be interested in L-simplification of
Jackson netwqus with respect to strongly lumpable partitions II.

We first investigate the effect of such L-simplifications on equi-

librium operating characteristics and especially on the traffic equation.

Theorem 5.3.1

Let JN = (M,a,0,P) be an open Jackson network. Let II = {CQ}ZEL

be a partition of M which is strongly lumpable with respect to P.

Let JN" = (L,a",0",P") be obtained from JN by means of a L-simplification

with respect to I such that

-a) for every 2,nelL

(a.1) ag z: Oy

keCQ

(a.2) 0‘2' 4 Z Ok
keC

L
(a.3) py 4p(C,,C) .
Then
(b) &) = 2 Sy , Vel .

keC2

| mE EE - S E - .
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() ¢'(2,n) = §(C,,C) V&,nel ,

Proof

For every keM,
(1) & =0 + ZGJ P

Summing (1) over keC, for any gel,yields

(2) 26 Za+226

keC ksC keC = J Jk
(1" + ZG Ep = d." + 2:5 P(J C )
keC i=1

due to (a.1) and (a.3). But

(3) ZGJchC) S LSchC)
' j=1 neL JEC

S 2 8p(C,C) = Sp(C) c,L)Za
nel JEC nel

due to strong lumpability of T.

Since p(Cn,CR) £ P;g and in view of (3), Equation (2) becomes

(4) 228 =y + Fply 556, : Viel .
keC2 nel JeCn

Thus, (4) shows that (b) satisfies the traffic equation of JN", and
therefore must be the (unique) traffic solution of JN",

Next, we compute for every %,nel ,

(5) 8(C,.C) = & Top; = £ 21y

keC jeC keC JeC

2 6,p(C,,C) = py 3 8,
ksC k€C£

Equation (c) now follows by substituting (b) into the right-hand side

of (5). : ' ‘ O
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Corollary 5.3.1

Under the simplification JN k= JN" of Theorem 5.3.1, JN" evolves

into equilibrium if JN does. 1

An interpretation of Equations (a.3), (b) and (c) in Theorem 5.3.1

results in

Corollary 5.3.2

Let the partition II of Theorem 5.3.1 induce a partition I' of L
into singletone blocks, i.e. {2}kI' iff CQEH, Then, the L-simplifica-
tion of Theorem 5.3.1 leaves the following quantities unchanged:

a) the switching probabilities between blocks of I and the respective
blocks iﬁ m*;

b) the expected equilibrium traffic rates through blocks of I and
the respective blocks in 1I';

¢) the expected equilibrium traffic rates among blocks of I and the

respective blocks in I'. L]

The next theorem exemplifies how a simplification procedure (see
Appendix B) may simplify the investigation of complex simplifications.

Here, a L-simplification is decomposed into two simplification stages:

a A-simplification followed by a L-simplification (see Figure 5.3.1).

Theorem 5.3.2

Let JN = (M,a,0,P) be an open Jackson network which possesses a

state equilibrium. Let I = {Cz}leL be a strongly lumpable partition of

P such that

N A R =y aE aEm Eaa

aan N e
\ _
- "

- } ¢
?
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a) for each %el,

(a.1) p(,C,) >0 , VkeC,

(a.2) o, = const. s VkeCz‘
(a.3) 6k = const. , VkeC2
(a.4) 8(C,,k) = &p(k,C)). vkeC, .

Next, let JN" = (L,a",c",P") be obtained from JN by a L-simplifica-
tion with respect to I (see Figure 5.3.1) such that

b) for every &,nel ,

S o

keCQ

(b.2) o} & 2o p(k,C))
' keCQ

>

(b.1) o,

>

0, if g2 =n
A
(b. 3) pgn = C c
p(C,,C)

Then, the L-simplification JN p=——> JN" above possesses a state

for any keCQ, if 2 #n .

equilibrium, and it further gives rise to the following relations be-
tween behavioral frames of JN and JN':
¢) for any blocks Cz,CneH in JN and the respective nodes &,neL

ih JN'", we have tﬁat

(c.1) the equilibrium line distribution of any nbde keCZ equals that
of node £; |

(c.2) the switching probability from CZ to Cn and from & to n are
related by p;n~p(k,C2) = (l—dln)-p(CQ;Cn), where Son is
Kronecker's delta and k is any node in Cl;

(c.3)» the expected equilibrium traffic rates from C, to C and from
2 to n are related by 6'"(&,n) = (1-§2n)-6(C2,Cn);

(c.4) the ratio of expected total service time in CZ to expected
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: 1

service time at & is ICQI

(c.5) the ratio of the expected total number of customers in C2 in
equilibrium,to the expected line length at node £ in equilibrium
1.

is lC2|

Proof

By strong lumpability of P with respect to II, we have
(1) p(k,C ) = const. . VkeC,

for any Z,neL; It follows that for each f%eL,

(2) p(k,Cp)

Combining (2), (a.3) and (a.4) yields for each feL,

const. s VkeCz

c3) 5(5£,k) = 5kp(k,ﬁ£) = const. , VkeC, .

We now show that the L-simplification JN == JN" can be decomposed

into two simplification stages JN ¢ JN' pm—> JN" (see Figure 5.3.1),
where the first one is the A-simplification of Theorem 5.2.1 and the
second one is the L-simplification of Theorem 5.3.1.

More specifically, JN #+=—> JN' is the first stage‘A—simplifica-
tion, where JN' =  M,a,0',P') such that |

(4) for every i,jeM,

v A s :
(4.1) of = cip(l,cz) whenever 1sCQ

0, if ieCz and jeCZ for some el
(4.2) pij ¢ P . |
1)

—_—, if j j #C L.
p(1,Cy) 1eCZ and j# 1y for some Le

Thus, JN = JN' is the A-simplification of Theorem 5.2.1, and by virtue

of Theorem 5.2.2 and (a.4)

o=
et
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(5) 6% = G(Cz,i) = Gip(i’cl) whenever 1eC2.

Next, show that T is a strongly lumpable partition of P'. For

every keM, Cnen,

0, if keC
n
A : P
(6) p'(k,C.) = 2_p!. = K . | =
n jecn kj J%m , 1if kECz, L #n
n
0, if keC 0, if keC
n : n
p,CY " )e(c,.C)) e,
PIT,)  F RGP AT POy 0 EReG A
From (6) it is seen that for every 2,nel
(7) p'(k,Cn) = const. s VkeC2
i.e. T is a lumpable partition of P'. Consequently, we may proceed to

perform the second stage L-simplification JN' == JN", where
JN" = (L,o",0",P") such that )

(8) for every %,nel ,

.1) & T = X
-t keC k keC X
g %
(8.2) o} 8 5Sa = o, p(k,C))

keC k keC2

0, if £ =n

no 4 =
(8-3) Pzn = P (C ,Cn) p(CQI’Cn)

Thus, JN' #=—=> JN" is the L-simplification of Theorem 5.3.1. In view

for any keCz, if 2 #n

of Theorem 5.3.1 and (5)

1]

© &y = & = 5 6(C,,k) = Zékp(k,CZ) , Veel .
keCz keCl keCQ

A comparison of (8.1) - (8.3) with (b.1) - (b.3) shows that the simpli-

fication procedure resulted correctly in JN".
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Since JN was assumed to possess a state equilibrium, it follows

from Corollary 5.2.1 that JN' possesses a state equiiibrium, as

JN = JN' was defined to be the A-simplification of Theorem 5.2.1.

It now follows from Corollary 5.3.1 that JN" also possesses a state

equilibrium, as JN' k== JN'"' was defined to be the L-simplification of

Theorem 5.3.1.

¢

We now proceed to prove assertions (c.1l) - (c.5).

Proof of (c.1):

From (a.2) and (a.3) it follows that for each %eL,

8

(10) Py = = const.

|

, VkeC .

Moreover, in view of (9), (a.3) and (2)

for any keCR, v2eL.

Finally, in view of (8.2), (a.2) and (2)

(12) oY = |C2|ka(kfcz)

Hence, from (10), (11) and (12)

am A EE.= lCzlékp(k,CZ) _ s
k % ICzlokp(k,Cg) an

for any keCz, V2eL .

4 Py for any keCz, Vel .

Assertion (c.1) now follows,since the equilibrium line distributions

are determined by the p parameters.

Proof of (c.2):

Follows directly from (8.3).

Proof of (c.3):

For any CZ’CnEH s
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0, if 2 =n
A - ’
(14) 8'(C,,C) = & & Sipys =

3 f 2
kECSL JECn Z Z ka(k C )‘ (k C ) 1 # n
keC JsC
0, if 2 =n 0, if £ = n
> Z(Skp] , if L #n §(C,,C) , if 2 #n

ksCl JEC

by virtue of (5) and (4.2).
Hence, for any Cg’CnEH’
(18) 8'(Cy,C ) = (1‘%1)‘5(%’%)
But by Theorem 5.3.1
(16) 6'(C,,C ) = s"(%,n) , V&,nel

whence assertion (c¢.3) follows.

Proof of (c.4):

By Theorem 5.2.4 and in view of (a.2) and (2), the expected total

service time in each C ell is ————¥L1=——
% o.p(,C,)

k 2 _

From (12) we conclude that the expected service time at the respective

1
ICglckp(k,E )

, where k is any node in CZ.

node fcL is , where k is any node in CQ.

The requisite ratio is, thus, seen to be ICQI N

Proof of (c¢.5):

Since the equilibrium distribution of the line size at node i is
Pi
l--pi

geometrical with parameter Py> the respective expectation is

Consequently, the expected total number of customers, in equilib-

rium, in each block Ckan is
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P C,le
an T = |1’fl k for any keC,
keC, "k Pk.
due to (10).

We already know from (13) that pg = Py

Hence, the expected line length, in equilibrium, at each node %eL is

where k is any node in C,-

' Py Py
(18) 57 = T, , for any keC, .

From (17) and (18) it follows that the requisite ratio is ’ICl] 1. [T

We note in passing that Theorem 5.2.3 and Corollary 5.2;2 may be
used to give structural conditions that imply the behavioral conditions
(a.3) and (a.4) of Theorem 5.3.2.

In conclusion,we remark that Theorem 5.3.2 illustrates a heuristic
principle involving simplifications of the lumping type. In such situ-
ations, a network of components is partitioned into blocks and then each
of them is lumped into a simpler component.

Heuristically speaking, we can expect a considerable preservation
of behavioral frames, when the block in the base model consists of
components which are similar or uniform in some sense. Consonant with
this view, the base network of Theorem 5.3.2 was partitioned into blocks
with "similar'" components, and then each block was lumped into a siﬂgle
node.

The resulting lumped network turned out to be a scaled down version
of the base network with a variety of remarkably related operating

characteristics.
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5.4 Simulation Complexities of Jackson Networks

A simulation complexity is a measure of computer resources required
to run a computer simulation of a model. In practice, the model may be
run for some interval of simulation time until a sufficient number of
customers are simulated, or until some other stopping criterion is met.
A good simulation complexity should not only allow a user to compare
the simulation costs of various models but should also aid him in ob-
taining a reasonable estimate of computer resources, e.g. total CPU
time and average memory space needed for the simulation. Othér measures

such as maximum requisite memory, time-space product, etc. are of con-

siderable interest in estimating simulation cost, though hard to compute.

In this section,we shall discuss some time complexities and space
complexities as described above. In what follows we have in mind a
discrete simulation language which is of the transaction flow type (e.g.
GPSS; see [Schll), or of the event scanning type (e.g. GASP; see [PK1]).
Such a discrete simulation language makes it easy for a user to simu-
late a discrete event system, say a DEVS.

The language software handles the queuing up of future sequéntial
state transitions (jumps) in an ordered list (called the future event
list) according to their time of occurrence. It then processes the
jumps by computing the new sequential state, again in order of occur-
rence. In this context, the jumps alluded to above, are called "events"
(not to be confused with probabilistic events).

In queuing-theoretic context, the probabilistic analogue of a
system-theoretic event is, loosely speaking, a discontinuity in the sam-

ple functions of the state process {Q(t)}tzo' To avoid ambiguities we

shall refer to system-theoretic events as simulation events.
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Since a particular computer simulation pertains to a particular
though "random'" queuing history, it is often reasonable, as an inter-
mediate step, to define first random time complexities and random stor-
age complexitiés. These random complexities should be random variables
whose realizations measure the cost of CPU effort and memory space
required by the respective sample simulation run.

The résulting time and space complexities would then be defined as
deterministic quantities in terms of the respective expectations, time
averages, etc. Throughout the impending discussion, we shall assume that
JN = (M,a,0,P) is an underlying Jackson network with which those com- .
‘plexity measures are associated.

We begin with a discussion of simulation time complexities (de-
noted C;). Consider the time complexity
@ ¢ A M =n.

C%l) is a measure of network size, and it reflects on the rate of simu-
lation events in the network, since every node is a location of '"ac-
tivity". (The number of arcs is irrelevant in this respect, because only
eV

arrivals and departures at nodes generate such events.) is a crude

measure because it does not take note of the probabilistic topology of

JN.
céz) is similarly crude;
(2) A \ m m
@ cf & {lall '+ o]l = oy + So; -
1=1 1=1
It is defined as the sum of expected arrival rates and potential depar-
ture rates in the network. C%z) has the additional disadvantage of

being dependent on the time units, in which o and o are measured; e.g.
if the time unit changes from seconds to minutes, C%z) also changes.

A better time complexity is provided by network "closedness."

o
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Loosely speaking, network "closedness'" measures how 'difficult"
it is to leave the network. .Its validity as a time complexity stems
from the fact that the harder it is for a customer to leave the network,
the more simulation events are going to be induced by him.

m
Denoting a3 4 1 - E:pij’ we define for open networks
j=1

m
@ o &G e
i=

Observe that 0 < C%a) < 1; thus, the larger C%g), the larger the number

of visits paid by a customer to nodes in the network. For closed net-

works C%a) = » 35 it should be.
C%a) is defined as the "average closedness', but it does not take

note of how likely a customer is to arrive at node i. Thus, if we add
nodes which are never reached by any customer, C§3) will still be
affected.

To remedy this deficiency, consider the number of visits of an
incoming customer at node i, during his stay in an open Jackson net-

work. Denoting this random variable by Ki’ we define

m
@ cf EE(TK) .
i=1

C%q) is the expected total number of visits to nodes made by an incom-
ing customer during his stay in the network. This time complexity comes
closer to CPU effort than any of the above. C%q) has the additional
advantage of being computable for open networks (see Remark 4.6.2)
) ¢ - Lell
el
(4)

which also shows that CT“ takes full account of the network topol-

ogy. Recall that & is the traffic solution of the network, and that
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{
in equilibrium it coincides with the expected rate of service comple-

‘tions at network nodes.

. . - L
Thus, (5) gives rise to another interpretation; namely, that Cé )

is the equilibrium ratio of expected service completion rate to expected
exogenous arrival rate. This ratio can be viewed as the internal load
(= ||6]]) induced by a unif of external load (= @) in equilibrium, and
it makes sense to compare these quantities for networké with fixed ex-
ternal load. However, Céq) ignores simulation events induced by cus-
tomers that were initially in the network, as well as those whose stay.

in the network has not'been.completed.

C%q) has yet another interpretation as a measure of '"'closedness'.
m m
To see this note that Z:ai = Z:aiqi (see Theorem 4.4.4) whence
i=1 i=1
1 : < c#) < 1
(6) S miniq,: 1sism} -

max{qir l1<i<m}

(3)

T and this approximation becomes

Thus Céq) is approximately equal to C
exact as the q; approach a common value. Indeed, it can be shown that
c{Vp o as c§3)-»4> 0.

C%q) is suited for situations when the cost per simulated customer
is of interest. For instance, one may wish‘to simulate a certain num-
ber of customers, so as to obtain reasonably reliable statistics. Typi-
cally in this case, the number of customers to be simulated is fixed,
while the simulatioﬁ time interval is unsbecified.

A different situation arises when the simulation interval is fixed
and the number of customers is unspecified. In this case, the total
number of simulation events oc:urring in a simulation interval [O;t]

reflects on the requisite CPU effort. Observe that a simulation event

occurs iff there was an exogenous arrival or a service completion at

e
g
e
i
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some node. This observation gives rise to

M Y ® & s E(EZ&D (t)

where Di(t) is the total number of service completions at node i in the
simulation interval [0,t]. C%s) is interpreted as the total internal
load per unit external load in the simulation interval [0,t].

Cés) differs from ng) in the way it accounts for customers ini-

tially in the system and those who don't leave it. It has the repre-

sentation (see Theorem 4.2.1)

® e = Pr(Q (x)>0) dx
||°‘Ht i 1

from which we conclude that C(S)(t) lL—LL for any t 2 0. For open

Jackson networks in equilibrium, Cé ) becomes
sl
[lo]]
()

It is interesting to note that in this case Cés) and CT
(s)
CT

5
© cfPm =
coincide.
may be used to estimate the total number of service comple-

tions that occur during a simulation whose stopping rule is the arrival

of N exogenous customers., We define

s

which for open networks becomes, in equilibrium,

(6) oy sl
(1) ¢/ M) =N Tl

Notice that Tel] is the expected arrival time of the N-th customer.
[¢3

6) . R . . . .
Thus,C% ) is an estimate of the number of simulation events in the simu-
lation interval [0, TTBTT ]

o

However, Cée) is not the exact expectation of the total service

N
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completions required to simulate the network until the arrival of the
N-th customer, because this time interval and the total number of
service completions occurring in it are apparently correlated.

We now consider time complexities that come closer to measuring
actual CPU time.

Let T be the processing time of a simulation event. T is a random
variable whose randomness is mainly due to the variable length of the
future event list at the time of processing. In practice, T might
be a constant plus a term proportional to the length of the future
event list.

Next, refine C(7) by

(12) c,l(,7) a E(ZK )

()

In other woxrds, C is the expected CPU time required for simulating an

incoming customer. Unfortunately, it is not readily computable. Even
if E(T) is known, we still need to know how Ki and T are correlated.
When zero correlation can be assumed, C£7) becomes for open networks

. |

az c? - E(é,x YE(T) = Jl
T i=1 [all

E(T)

(s) and

A similar situation arises when an attempt is made to refine CT

CéG) by defining respectively

ae) cf® (e & 2 E()“D (D)
Ilallt i=1
and
m
(9) A N
(15) C”’ (N) = E( 2D, ( )T) .
T i=1 1 |]a]|

‘ Cég)(t) is the expected total CPU time required to process service com-

pletions (total internal load) in the simulation interval [0,t] per unit

external load in the same interval. Likewise, Cég)(N) estimates the
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expected total CPU time required to simulate the network until the N-th
exogenous customer arrives.
We now proceed to discuss simulation space complexities (denoted
CS). Space complexities have two components: static and dynamic.
Static space complexities arise from the memory storage required
to represent a queuing network topology in a computer, not including
waiting lines. Thus, these complexities are essentially a measure of

network size in terms of nodes and arcs. For example,

(16) Cél) 4 sNIMl * ':E: Sy
(1’J):pij>0

where SN and Sp denote memory storage required to represent a node and
an arc respectively in the computer, exclusive of waiting lines.
Dynamic space complexities, on the other hand, reflect the total

length of waiting lines in the network during a simulation. For example,

m
an P ) LECsup (0 (0 0srst) .
©i=l
Céz) estimates the maximal total length of queues in the simulation
interval [0,t]. Unfortunately, it is difficult to compute. Consider

instead the smaller measures

m
18) c{P(r) & sup {E(ZQ (1) Osest)
i=1
and
m
19 ¢ 21 [rE o (e
i=1

which are more amenable to computation.

For open Jackson networks in equilibrium, both Cés) and Céq)
reduce to the same time independent function

m . moo,.

20) ¢{P () = ¢V ) = BT o 1)) = T

S S j=1 1 i=1l-p.

1
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S,
where ﬁi = Ei- (see Theorem 4.5.1).
i

As the network approaches instability (viz. pi-—~>1 for some i),

NONENE.

l-pi

Notice that the variance of the instantaneous total length of

queues ;?iQi(t) in equilibrium is
i=
m i m o5
(21) V(i{:lqi(t” = 121 ez
due to the independence of the individual queues (see Theorem 4.5.1).
Consequently, as the network approaches instability, V(;?iQi(t))—wda‘”
=

as TET%ESE" and our confidence in Céa) and Céu) as dynamic storage

estimates decreases very quickly.

c(3)

When the simulation requires that sufficient number of customers be

simulated, the counterparts of C§3) and_Cé”) are respectively

(5) gy A - N
(22) Cg™ () S sup {E(J°Q;(1)): 0 <7 < }
in1 Hall
and N
‘ Hall
23) ¢ & / E(3Q, (x))dr
Hall i=1
0
In équilibfium, Cés) and Cés) reduce to the same constant function.

We conclude this chapter by comparing the effect of some of the
simplifications in Sections 5.1 - 5.3 on some of the simulation com-
plexities of this section. Figure 5.4.1 summarizeé these effects. It
employs the following notation. 

A simulatioﬁ complexity can be non—incieasing_(denoted by +), or

unchanged (denoted by =). A question mark indicates that the behavior

S and Séq) were defined as functions of the simulation interval.
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F-simplifi- A-simplifi- L-simplifi- L-simplifi-
cation of cation of cation of cation of
Theorem 5.1.5 |Theorem 5.2.1 {Theorem 5.3.1 |Theorem 5.3.2
C%l) - = v ¥
ol v v = v
ol ! ' ? ?
C%”) v v = v
c,%s) ¥ ¥0 =0 ¥°
(31(,6) v 4° =0 +°
Cén ¥ + ¥ ¥
cé” = ? ? ?
Cég) = =0 ? +°
Cé”) = =0 ? 4°
Cé5) = =0 ? +°
cd®) - =° ? +°
Figure 5.4.1: A Comparison of the Effect of Various Simplifications

of Jackson Networks on Some Simulation Complexities.
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is unknown or mixed (depending on simplification parameters). An

appended circle means that both the base model and the lumped model

of the indicated simplification are assumed to be in state equilibrium.

The results in Figure 5.4.1 follow from the theorems alluded to
in the headings of its columns and from the discussion in this sec-

tion. It should be born in mind that the results presuppose that the

conditions of those theorems hold for the simplifications under con-

sideration. For those complexities which are functions of t or N,

the comparison is valid for any fixed argument.
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CHAPTER 6

CONCLUSION

6.0 Summary

Two lines of research have been pursued. The first line of
research concerned analysis and simplifications of discrete event
systems. The logic of deterministic discrete event systems was
studied, when formalized by DEVS-related concepts. A hierarchy of
morphic relations was developed in accordance with the‘conceptual
framework of Appendices A and B. An extension qf this framework to
stochastic discrete event systems was proposed. In this approach
system-theoretic and statistical-theoretic aspeéts are combined via
representation in coordinate probability space. A hierarchy of morphic
relations for stochastic systems was then developed in terms of
measure preserving transformations. Finally, we derive a methodology
that provides sufficient conditions which ensure preservation of
behavioral frames under point simplifications.

The second line of research concerned analysis and simplifications
of Jackson queuing networks with single server nodes. In studying
their operating characteristics, especially state equilibrium, a
number of theoretical gaﬁs in the extant theory have been closed.
Results on open and closed Jackson networks were unified as results for
mixed networks. The main result is derived in a study of equilibrium
traffic processes on arcs, as an éxtension of Burke's Theorem (see
[B1]) from M/M/s queues to Jackson networks with single server node.

This result has applications to decompositions of Jackson networks.

270
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Finally, three types of simplifications of Jackson networks are
exemplified, as well as their effect on a number of simulation

complexities associated with them.

6.1 Further Research

Several lines of further research emerge from these studies. As
regards the area of discrete event systems, the DEVN (discrete event
network specification) concept warrants special attention.

The ability to identify components in a DEVS (so that it can be
represented as a DEVN) entails a conceptual simplification and better
understanding of its operation. A hierarchy of DEVN morphisms, where
each morphism can be decomposed into local DEVS morphisms between
components, is of interest for similar reasons. This line of study
hés potential applications to modeling of discrete event systems.

In the study of Jackson networks, the lack of customer-oriented
operating characteristics, such as waiting and transit times, is a
glaring omission. Little is known about these important problems
(see [R1] for a survey of related problems). We remark that their
solution is necessary for attaining a balanced set of operating
characteristics.

More research is also needed to elucidate the nature of traffic
processes on non-exit arcs. An immediate problem is to prove or
disprove the conjecture that such arcs cannot have Poisson or even
renewal traffic on them (excluding the trivial case pii=1). This line

of research has potential applications to decompositions of Jackson

networks.
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Finally, an attempt should be made to generalize Jackson networks
to more realistic queuing network models. The main directions of
generalization that have recently emerged are: general servers, general
switches and multiple classés of customers.

In addition, we suggest that the simplification methodology (set
forth in Theorems 3.1.1 and 3.2.1 in Chapter 3) can be applied to
simplifications of the generalized queuing networks alluded to above.
As an example, we claim that it readily provides a proof for the
following conjecture: in any queuing network, the idle-busy period
proéess is invariant (in distribution) under queuing disciplines such
as first come first served, last come first served, time sharing and

preemptive resume.



APPENDIX A

- SOME BASIC SYSTEM THEORY

A.0 Introduction

This appendix provides some sysfem—theoretic background for
readers who are not familiar with the terminology and mathematically
oriented approach to System Theory. The entire appendix is a digest of
the relevant sections in Part 2 (Chapters IX and X) of [Z1], with
rather minor modifications. The latter merely consist of slightly
altered conventions and terminology that better conform to the goals of
this thesis.

The appendix is intended to be an introduction to Chapfer 1. It
also outlines the conceptual framework into which Chapters 1, 2 and 3

are fitted.

A.1 Mathematical Systems

The Mathematical System concept is a fundamental formal tool for
description and analysis of most real life systems. The central con-
ception is that the system evolves in time through a succession of
states, under some external input. It produces an output according to
its current state. ' The following is a standard formal definition of a

mathematical system.

Definition A.1.1 *

A Mathematical System (also known as an Input-Output System, or

I/0 System) is a structure

273
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s = {(T,X,9,Q,Y,8,\)

where

A

is
is
is
is
is
is

is

the time base set

the input value set

the input segment set

the state set

the output value set

the state transition function

the output function

subject to the following constraints:

a)
b)

c)

d)

A

T is a well-ordered Abelian group

The input segments in @ are functions w = w where

(t),t,]
w:(tl,tz]—4»x tl,t2e12

Q is closed under composition (juxtaposition) of_configuous
input segments, viz.

W , W EQ = w Quw? €Q

where the function w Buw’ = is defined by

t)

A

w(t t ](t), if t1< t
g ® F 4T
t,,t

1°°3

A
ot

| w (t), if t< t <
g (t2,t3] 2

§ is a function 6:QxQ—>Q satisfying the following composi-
tion property:

w ,w’ € Q’ quQ:

§(q,uw ®uw, ) = §(8(q,uw ), wy )
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e) A is a function A:Q—=Y.

An important operation on the input segments is described by the

translation operator TRANS where TRANS_(w) = § such that if

A

w then & = a( is defined by &(t) = w(t - T).

=W
(ty,t,] t+T,t¢1]

1
If @ is closed under translation, we may extend the composition

operation from contiguous input segments to arbitrary input segments

W= w and w” = w; by
WOw” = w” where o = o is defined by
(tl,t2+t4-t3]
w(t), if t.<t <t
ey (t) 1 2

(TRANStz_tS(w N, if tct st +t, -t

We now define an important class of systems.

Definition A.1.2

A Mathematical system S = (T,X,0,Q,Y,8,\) is time invariant if
a) Q is closed under translation viz.

weN = TRANST(w)e Q, for any t > 0.

b) 6 is time invariant viz.

VqgeQ, VweQ, VTt 2 0, §(q,w) = G(q,TRANST(w)). '

Notice that for time invariant systems, it suffices to consider
only those input segments that start at the origin.

Our interpretation of the system concept runs as follows.
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A system is conceived of as having two elements: an internal element
which we call "structure', and an external elemgnt we call "behavior".
The term "structure'" refers to the state space and the state transi-
tion function 8. Pictorially, a system is viewed as some black box
which undergoes internal changes when stimulated by an input segment.
The internal change (the transition function) sends the system into

a new state as a function of the initial state and the input segment
only. Moreover, this internal state transition is deterministic.

On the other hand, "behavior" refers to the external and observable
manifestations of the internal processes of state transitions.
Picforially speaking, a behavioral aspect is recorded by inserting a
particular probe into our '"black box" which can measure a certain
aspect of the system's internal state.

Consonant with these views, we introduce the following definitionms.

Definition A.1.3

A mathematical state-system is a mathematical system
s = (T,X,92,Q,*,8,) with unspecified output value set Y and output

function .

O
Definition A.1.4
A behavioral frame of a mathematical state-system
s = (T,X,Q,Q,+,8,*) is a structure ¥ = {Y,)A) where the symbols in
the angular brackets have the same meaning and constraints as in
Definition A.1.1.
O

Our definition of a behavioral frame is a simplified version of
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the concept of experimental frame in a modeling confext (see [Z2]
and {Z1] Ch. II). In this context the term experimental frame is
used to capture the observational limitations imposed by reality on
the modeler. Here, however, we deal with an idealized situation and
both terms may be considered coincident. Notice that when we parti-
cularize to a certain behavioral frame of a mathematical state-system,
we obtain some I/0 system of Definition A.1.1.

In other words, a state-system is more fundamental in the sense
that it spawns a host of I/0 systems which stand in a one-one relation

to all possible choices of its behavioral frames.

We regard this collection as an equivalence class induced by a
state—system. The symbol {T,X,Q,Q,*,8,*) will also stand for a
representative of such a class. This notation will be used in the
sequel, wﬁenever we wish to focus on the state structure, whereas the

behavioral frame may remain unspecified. Consequently, the dots in

the structure (T,X,Q,Q,*,68,+) should be understood as generic variables

or '"don't care" symbols according to the context. Furthermore, the

terms state-system, representative system or simply system will be

~used interchangeably, whenever the context precludes ambiguities.

Indeed, from a modeling standpoint, "structure" is more fundamen-
tal than "behavior'". The modeler starts with‘a set of empirical data
(""behavior"), and tries to postulate a model ("structure'), that can
account for the data. The process of modeling consists of successive
refinements of that model (structure adding) to aécount for a growing
set of empirical data. Theoretically, if the full structure (state-

system) is known, then the modeler can predict any system behavior, and

modeling is completed. In most cases, this requires infinite time and.
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cannot be accomplished.

Mathematically, the éonceﬁts of "structure'" and 'behavior" are
completely dual; '"structure' accounts for‘all "behavior', while given
all "behavior'" we can always postulate a '"structure'" to account for it.
To clarify our view we point out an analogous situation in the field
of formal languages, (see e.g. [AUl] Ch. 2, Sec. 2.1.2). A formal
language is the analogue of a mathematical system. It may be dually
defined either by a set of transformations (called productions) on
some initial strings, or by Specifying the set of strings thus gener-
ated. Given the set of productions ("structure') we may run (or
simulate) the system in varioqs ways to yield various strings
(""behavior'"). Conversely, the entérprise of modeling becomes that of
finding the set of productions that can account for a given set of
strings.

Mathematical systems can be described in terms of their state and
output trajectories. These trajectories assign a full state and an

output value respectively to time points.

Definition A.1.5

Let S = (T,X,9,Q,Y,8,\) be a mathematical system. Let q€Q be
any state and let w€ @ be any input segment where w:(tl,tz]-ﬁ>x.

The trajectory of (q,w) is a pair TRAJ(q,w) 4 (STRAJq w,OTRAJq w) where

a) STRAJq,w:[tl,tz]—¢>Q is a function defined by

(q, if t = t1

A
STRAJq,w(t) =

N

G(q,wl(tl,t]), if te(t,t] and w| (t;,tleq

undefined, otherwise

L
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and called the state trajectory of (q,m).+

b) OTRAJq w:(tl,tz]—4>Y is a function defined by

>

A
OTRAT,  (t) = A(STRAJ_  (t))

and called the output trajectory of (q,w). 0

To wrap up the discussion of mathematical systems we show how to

identify subsystems within a mathematical system. Formally, we define

Definition A.1.6

Let S = (T,X,Q,Q,Y,d,k) be a mathematical system. A mathematical

system § = (T,X,2,0,Y,5,%) is a subsystem of S if

a) fce

b) Qcq

c) &= 8|Qxd
d) X =1lQ

O

In other words, a subsystem is a system restricted to a subset of
states. Notice that for a subsystem S of S to be well-defined, it is
necessary and sufficient that 6 be closed under § and ﬁ. That is

A A A
qeQ and w€Q = 6(q,w)€Q .

Next, we turn our attention to relations among mathematical
systems and their trajectories. The class of relations, that we con-
sider here is called morphisms. Roughly speaking, morphisms preserve

various aspects of system structure and behavior, in a complexity-

+A vertical bar designates restriction of a function domain.

Lt
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reducing manner.

Definition A.1.7

A system morphism from a (mathematical) system S = (T,X;Q,Q,Y,G,A)
to a (mathematical) system S~ = (T’,X’,Q’,Q’,Y’,G’,A‘) is a triple
(g,h,k) subject to the following restrictions:

a) g is a function g:Q”"—e=Q called the i{nput segment encoding

funection.

b) h is a surjective (onto) function'h:§?¢>Q’ called the state

decoding function and QCQ.

c) k is a surjective function k:Y—eY~ called the output decoding

function.

d) VqeQ, Vu'e 9° we have h(8(q,g(w?))) = §°(h(q),n")

i.e. transition function preservation.
) VqeQ we have k(A(q)) = A"(h(a))
i.e. output function preservation.
(I
The relations among the components of S and S” are depicted in Figure
A.1.1.

The preservation aspects of the functions h and k with respect to
8§ and X respectively are described by the commuting diagrams of
Figurest.l.Z and A.1.3 respectively.

An important way of viewing morphisms is to regard them as system
simplifications (see Appendix B for more details). Informally, a
simplification involves reduction of complexity as well as preservation
of certain aspects of structure and behavior. Consonant with this view

we give the following interpretation.
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Figure A.1.1:

Relations among Components of Morphic Systems.
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§(q,g(w"))

q” = h(q) §“(h(q),w”) = h(8(q,g(w")))

Figure A.1.2: Transition Function Preservation,

A(q)

q” = h(q) A7 (h(q)) = k(A (q))

Figure A.1.3: Output Function Preservation.
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The encoding function g matches compatible input segments. The
decoding functions h and k simplify the system structure and behavior
respectively. The simplification aspect of h and k results from the
fact that they are surjective (onto) but not necessarily injective
(one-one), in view of properties b) and c) in Definition A.1.7. Such
maps incur an information loss, when one attempts to deduce the pre-
image from its image. This information loss embodies the complexity-
reduction effect while properties d) and e) in Definition A.1.7
represent the preservation effect of a simplification.

State and output trajectories are sufficiently important to

warrant a separate morphism concept.

Definition A.1.8

-

Let w (tS’t4]

and w be input segments of two mathematical

systems S and S” respectively. Let q and q” be states of S and S~

respectively.

A trajectory morphism from TRAJ(q,w) to TRAJ(q”,w”) is a triple
(MATCH,h,k), subject to the»following restrictions:
a) MATCH:[tl,tz]w*-[tS,t4] is a bijective (one-one and onto)
function called the time matching function.

b) h:Q. —Q°. . is a surjective function where
q,w qQ°,w

Q = {qeQ: dt e [t1’t2] 5q = STRAJq

(t)} and similarly
q,w w

3

for Q&, ,-- D is called the state decoding function.
Ed

¢) k:Y—=Y~ is a surjective function called the output decoding

function.
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d) Ve,t” €t;,t,], t < t” => MATCH(t) < MATCH(t”)

i.e. MATCH preserves ordering.

e) Vtel[t),t)], h(STRAT_  (£)) = STRAJ . .(MATCH(t))

] 3

i.e. state trajectory preservation.

f) Vt e[tl,tz], k(OTRAJq,w(t)) = OTRAJq, m,(MATCH(t))

3

i.e. output trajectory preservation.

Roughly speaking, a system morphism (g,h,k) is a super trajectory
morphism which is uniformly good for any (q,g(w”)) and (h(q),0”").
We now define some important cases of specialized system
morphisms.
Definition A.1.9

Two systems S = (T,X,?,Q,Y,8,0) and S° = (T",X",0",Q°,Y",8",1")
are called compatible if

a) T=T"

b) X = X*

c) Q=9Q°

d) Y=Y~

Definition A.1.10

Let S and S~ be compatible systems and let i denote the identity
map. Then:
a) A system morphism (i,h,i) from S to S~ with Q = Q is called a

system homomorphism.

BEE N ENy . EEm

T s



285

b) A system homomorphism (i,h,i) from S to S” such that h is

bijective is called a system isomorphism.

When focusing on the state structure we obtain the following

analogue of the system morphism concept.

Definition A.1.11

A system state-morphism from a representative system
s = (T,X,2,Q,*,8,*) to a representative system S” = (T‘;X’,Q’,Q’,-,G’,->
is a pair (g,h) with the same meaning and restrictions as in Definition
A 1.7,

Likewise, a state-trajectory morphism is a pair (MATCH,h) with

the same meaning and restrictions as in Definition A.1.8.

It is now obvious how to define compatibility of representative
systems and how to proceed tb define the concepts of state-hombmorphism
(i,h) and state-isomorphism (i,h) among them. The case of state-
trajectory morphisms is analogous.

Finally, we note that morphic relations induce a hierarchy on the
class of systems, as it isinot difficult to see that these relations

are transitive. We shall not dwell on this point in this section.
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A.2 Iterative Specifications of Mathematical Systems

When dealing with a mathematical system of a special type, it is
often more convenient to specify it indirectly at a certain level of
detail. A translation process will then furnish the means of going
from that particular specification to the normal system specification
of Definition A.i.l. An important class of more structured specifi-
cations for time invariant systems is the class of iterative system
specifications. Essentially, what happens here is that the input
segment set is generated by a set of elementary input segments and
similarly for the state transition function.

First some backgroﬁnd concepts. Let (X,T), be the set of func-
tions of the form w:(0,7]— X, T€T. The composition operation

defined on (X,T), becomes where

w Cu? = "
(0,71 7(0,1,] (0,7,+17,]

m(O’Tl](t), if 0< t < T

A
" (t) ¢
)]

W
(0,T1+T

.‘w(O,Tz](t - Tl), if Ty < t < LT,

This renders (X,T), and the composition operation a semigroup.

If TC (X,T), , then the composition closure of T is called the
semigroup generated by T and is denoted r'. If T = Q, then T is
called the gemnerator set of Q. In that case, given w€ N, we wish to
decompose it into generator segments in a canonical manner, via right
or left segmentation. The term segmentation refers to the operation of
restricting an input segment w to subintervals. More specifically, a

left segment of w at t is defined by W, 4 wl(tl,t] for any

(t,t,]

t e(tl,tz]. Similarly, 0 ¢ wl(t,tZ] is a right segment of w(tl’tZ]



for any t € (t

obtained by taking successive maximal left segments and then chopping

10 %51
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The canonical decomposition we choose is that

o
-
[ 4]
=

L2
(2]
W
b
Jrevn

re

.

them off the remaining segment repeatedly.
More accurately, W) sWys el € T is a maximal length segment

(m.l.8) decomposition of w if for each i = 1,2,...n, whenever w”€ T

is a left segment of w.®w. .@...®0w_ then w” is a left segment of w,.

, i i+l n i

The merit of the m.l.s decomposition is the fact that if it exists,
~then it is unique (see [Z1] Ch. IX Sec. 9.8.1). We say that T is an
admissible generator set for Q if Q = r" such that each w€Q has a

(unique) m.1.s decomposition.

We are now ready for the main definition.

Definition A.2.1

An itera#ive‘speaification (of a mathematical system) is a
structure G = (T,X,9,Q,Y,8,)A) where

T is the time base set

X is the Znput value set

Q is the input generator set

Q is the state set

Y is the output value set

8 is the transition function

A is the output function
subject to the following restrictions:

a) T is a well ordered Abelian group.

b) 9 is an admissible set of generators of the form

w:(0,1]—=X, T€T.
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¢) 6 is a function 8:QxQ-—~-Q satisfying the following

composition property:
w0, € Q and w Ow, € Q = VqeQq, 8(q,w,00,) = §(8(q,0;),uw,)

d) A is a function A:Q—=Y.

O

The function 8§ in the above definition can be extended as follows:

Definition A.2.2

Let @7 be the translation closure of Q' . The extension of § is

a function §:Qx% —w=Q defined recursively by:

—_
VgeQ, Vw = w(tl,tz]eﬂ

§(q,TRANS__ (w)), if TRANS__ (w)€ @

Y 1

= A
S(q,w) =
— ® .
G(G(q,wl),wz@... wn), otherwise
where wawZO...®wn is the m.1l.s decomposition of w in terms of the

translated generators TRANSt ).

1 O

We now show how an iterative specification is translated into a

time invariant system.

Theorem A.2.1 N

If 6 = (T,X,9,Q,Y,8,)) is an iterative specification, then it

induces a time invariant (mathematical) system SG = (T,X,ﬁqu,Y,E;A).

Proof

See [Z1] Ch. IX Sec. 9.8.2. 0O
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An iterative subspecification G of an iterative specification G
is defined by restricting 8§ and A to QC:Q and §cQ precisely as in
mathematical subsystems (see Definition A.1.6). It is éasily seen
that if an iterative specification G induces a mathematical system SG,
then any iterative subspecificatipn G of G induces a mathematical
subsystem gG of SG.

We now turn our attention to morphic relations among iterative
specifications. This will follow the pattern, set up for system

morphisms in the previous section.

The basic definition now follows.

Definition A.2.3

A specification morphism from an iterative specification
G = (T,X,92,Q,Y,8,\) to an iterative specification G” =
(T”,X*,0°,Q°,Y",8°,0") is a triple (g,h,k), subject to the following
restrictions:
a) g is a function g:Q’—*>Q+ called the generator encoding
function.
b) h is a surjective function h:Q—=Q” called the state decoding

funetion and QCQ.

¢) k is a surjective function k:Y—eY” called the output decoding

funetion. _

d) Vgq €Q, Yw € Q” we have h(g(q,g(w’))) = §7(h(q),w”)
i.e. transition function preservation.

e) VqeQ we have k(A(q)) = A”(h(q))

i.e. output function preservation.
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Just as iterative specifications translate into mathematical

systems, specification morphisms expand into system morphisms.

Theorem A.2.2

Let (g,h,k) be a specification morphism from G to G”. Then

(g,h,k) is a system morphism from Sg to S;. where

~ —+
a) g is the extension of g to Q- derived as follows:

Let wi®w£®,...,@wﬁ be the m.l.s decomposition of
w' = w7 ¢ %" in terms of the translated generators
TRANStl(Q ). Then g(w”) = g(wl)@g(mz)Q...@g(wn).
b) h=nh
c) k =k
Proof

See [Z1] Ch. X Sec. 10.5.

Specification homomorphisms and isomorphisms as well as the con-
cepts of specification state-morphisms and trajectory morphisms may
be defined analogously to those in the previous section.

We will not elaborate on this point.



APPENDIX B

FORMAL SIMPLIFICATIONS

B.0 Introduction

Simplification is a widely used method in the Sciences. Simpli-
fications are applied to such diverse entities as equation systems,
networks, system-theoretic models etc. They are extensively employed in
modeling and simulation of systems, detefministic as well as stochastic.

In the conceptual framework developéd by Zeigler in [Z2], [Z4],
[Z5] and [Z6], going from a base model to some lumped modei is a
typical instance of a simplification process. The simplification effect
manifests itself at various levels. When operating on informal descrip-
tions of system-thedretic models, a simplification may aggregate compo-
nents, simplify assumptions etc. (See e.g. [WZL1]}, [Z3], [Z27]). On
the other hand a simplification of a probability space may be viewed as
a measure preserving coarsening of the underlying sample space and
o-algebra. A simplification of an equation system is obvious enough.

In spite of their different appearances, all the simplification
notions above have an underlying conceptual similarity demonstrated by
two salient features.

1) They all reduce, in some sense, the complexity of the entity

to be simplified. |

2) They all are meant to preserve some aspects of the entity to

be simplified.

The rationale for fhe enterprise of simplification is what may be

termed the "simplification strategy'". The essence of this strategy is

291
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the ability to take advantage of a simpler entity [due to feature 1)],
whose manipulation is easier, yet yields valid conclusions pertaining
to the original entity [due to feature 2)]. Thus, a simplification

could enable us to use the simplification strategy towards a solution

of our problem.

In order to be able to deal uniformly with the diverse manifesta-
tions of simplifications in a variety of contexts, it is necessary to
formalize the conceptualisimilarity described by features 1) and 2)
above. A formal definition is required to capture these intuitive

features, so as to allow us to derive and recognize a broad range of

simplification instances by an assignment of the appropriate semantics.

In particular, this would provide us a uniform conceptual framework
for treating simplifications of deterministic systems and stochastic

ones alike.

We proceed to propose such a formalism in the sequel.

B.1 Simplification Predicates

Our discussion employs predicate-like notation similar to [Fol].
Assume that the following are given:
a) A set I of "systems" (descriptions).
b) A family {‘1’0}oez of "aspect" sets for each element in
"systems"'. |
c) A set C of "complexity" functions for 'systems' where c€C is
a function c:Z~—~&>Kc and KC is a totally ordered set under an

order relation ”sc".
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d) A set I of "preservation" relations between '"aspect' pairs in

3 3 1" 1"
U 2?0 x WO . We write ¢1 T wz if "aspect wl € WO
(01,02)6.2 1 2 1

is "preserved" in the sense of me Il by "aspect" wz € WO .
2

The terms cloaked in double quotes should be understood as
semantics free, although they were chosen so as to be suggestive.
Instances of the cloaked terms are obtained by interpreting them in
some domain of application. Thus, an instance of "systeﬁs" can be a
system of equations,.a set of mathematical systems (see Appendix A), a
set of DEVSs (see Ch. 1), or a set of quéuing networks. An instance of
"aspects'" could be a particular set of solutions, behévioral frames
(see Ch. 1 and Ch. 2) and functions thereof (e.g. means, time averages

etc.).

The complexity functions are devised to,captufe quantifiable as
well as intuitive complexity notions; e.g. computational complexity of
algorithmic solutions, conceptual complexity of a mathematical system,
size of a queuing network etc. (See also Sec. B.3).

A '"preservation' notion can rangé from outright equality to the
existence of a translation process from WC to WO (e.g. as formalized

1 2
by various morphisms in Ch. 1 and Ch. 3).

Various concepts of approximate preservation, e.g. allowing a
tolerance of an €-error such as in approximafe morphisms (see tZl]
Ch. XIII) and other relaxed versions of preservation (e.g. in mean
rather than in distribution), fall into the category of 'preservation"

notions.

o
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An ordered pair (B,A)e€ £2 is a simplification over : relative to c,
if c(A) "St” c(B). To stress this fact we shall also write 8k8>k .
Following [z3] we term B the base model, and A the lumped model of the
simplification BF€>A.

Néxt, a gimplification procedure over £ is a finite chain of pairs
(B1sA)s (ApsA,)seee, (A _1uA)) over 32 such that Bf—2>xn is a simplifi-

cation for some c€C. In this case we write B, X b—+... =) .
1 ¢ ™1 n

A simplification procedure merely decomposes a simplification
operation into a chain of successive stages, each of which may be re-
garded as an "intermediate simplification'". Simplification procedures
simplify the analysig of complex formal simplifications. For if a
simplification can be broken down into a composition representation in
terms of successive application of "elementary‘simplifications", then

its analysis reduces to the examination of the '"easier'" simplification

effect that is brought about in each stage. Thus, simplification pro-
cedures provide a means for "simplifying simplifications'. An example
of a simplification procedure is described in Sec. 5.3 of Ch. 5.

Let us define a simplification predicate S on sets of the form

U {(B,A)IxCx (¥ x ¥ )xI by
(B,2) ez? B A

S((B,X),c,(ws,wx),ﬂ) = 'true' iff an wx under Bk€>k; (that is, iff the

"aspect" wﬁe Y is w-"preserved" by the '"aspect" wke ¥, under the

B A
simplification (B,A) relative to the '"complexity' notion c).

In this case we say that the simplification Brg>k is valid in the
"aspect' pair (ws,wx) under the 'preservation" notion m.

Simplification predicates enable us to make statements about

simplifications in a formal manner. They also embody our intuitive



295

requirements which were preimposed at the outset on any formalism for

simplifications. The complexity reduction idea is obviously captured
by the '"complexity" function concept; the preservation idea is built

into the concept of '"preservation" relationms.

B.2 Simplification Problems and Their Solutions

A simplif%cation problem SP is stated in terms of a set of
simplification predicates to be evaluated over a simplification problem

domain D(SP) such that D(SP) ¢ U {(B,A)} xCx (¥ _ x¥ )xI .
(8,1) € 12 B A

Some of the frequently encountered simplification problems can be

formulated as follows:
SP1l: Given a simplification B**E:“A*, characterize all ""aspect'" pairs

(¢B,¢A)€ WB*XWA* and "preservation" relations m €1, such that
S((B*’A*),C*, (\UB,'\[)A):") = "true',

The problem domain of SP1 is D(SP1) = {(B*,x*)}X{c*}X(WB*XWA*)XH.
Intuitively, SP1 is»tantamount to taking a particular simplification

g* t;>k* and asking: what '"aspects'" are '"preserved" by it, and in what
sense of preserﬁation? More simply, the problem is to find the

preservation scope of B*fE:'A*.

SP2: Given a subset of "systems" pairs I'c £2, a collection of "aspect"

pairs {(wg,w;)}(s’k)e p» Where (wg,w;)e.yex ¢,, and a preservation

relation 7* €I - characterize all simplifications Brg»k over T,
such that S((B,A),c,(wg,wx),ﬂ*) = 'true'.

The problem domain of SP2 is D(SP2) = \U {(B,A) }xCx{ (*,p*) Ix{m*}.
(B,A) €T B

[
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Intuitively, SP2 is tantamount to taking a set of prospective simplifi-

cations, then choosing an "aspect" pair for each and a ”presérvation”
notion, and asking: what simplifications would be valid in their
respective "aspect' pair, under the predetermined 'preservation"
relation, and relative to what 'complexity" cfiteria? In other words,
we wish to find out the validity scope of our prospective simplifica-

tions and the scope of complexity reduction achieved by them.

A solution SSP of a simplification problem SP is a triple
SSP = <'assertion¥, 'proof’, 'algorithm;> where
1. ‘'assertion' is a statement asserting the scope of truth of
a simplification predicate S when evaluated over D(SP).
2. 'proof' is a proof of correctness for ‘'assertion'.
3. 'algorithm' is a finite decision process that effectively
evaluates the simplification predicate S for any argument in
D(sP).
The quotes cloaking the elements in SSP merely indicate that they are
generic. Usually, only ‘'assertion' and 'proof' need to be given,

whereas 'algorithm' often turns out to be implicit in the condition

set of 'assertion' (see Example B.4.3).

.
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B.3 Complexity Notions

Complexity notions, be they formal or intuitive, are used to
capture some aspect of difficulty presented to the investigator by
the entities under.consideration. Formally, a complexity notion for
a set of entities I is represented by a complexity function c:z—eK_,
where Kc is a totally Qrdered set under some order relation <o

This definition ensures that for any two entities 0150 €L, the

2
associated complexities c(ol) and c(oz) are comparable under <.

When the complexity notion ¢ is quantifiable (that is, Kc is a
subset of the reals), then the complexity function ¢ will be referred to
as a complexity measure.

Our main interest in the complexity concept will lie in its role
as a simplification criterion. Since simplifications are perceived as
complexity reducing maps among the entitieé under consideration,
examining the complexities of the prospective base and lumped models is
a means of deciding whether or not they constitute a simplification
pair. Furthgrmore, if KC has sufficient structure, say group structure,
then the same process would allow us to determine the extent of a
simplification, as well as to compare the complexity reduction effect
among simplification pairs.

We now proceed to discuss rather briefly some important classes of

complexity notions, both intuitive and quantifiable.

Cl) Conceptual Complexities:
Conceptual complexities have to do with the parsimony of system
specification. Two main components are involved: structural complexi-

ties and behavioral complexities.
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If, for example, the system is specified as a DEVS (see Ch. 1)
or an informal stochastic DEVS (see Ch. 2), then its structural
complexities reside in the size and nature of its state space, while
its behavioral cbmplexities reflect the conceptual difficulty of the
rules that govern state transitions.

For probability spaces structural complexities are identified
with the size or detail level of the underlying sample space and
c-algebra. Deterministic system morphisms as well as stochastic ones
give rise to simplifications which are primarily structural complexity
reducing (see Chapters 1, 2 and 3).

For systems describable by networks of interacting components,
;tructural complexities can be derived from the topological complexity
of the associated graph (e.g. its size in terms of nodes and arcs).

In a queuing network, behavioral complexities involve the waiting
line discipline, rules of servicing and the method of customer
switching.

Conceptual complexities are probably the most important and
fundamental notions of complexity. While structural complexities are
relatively amenable to quantification, most béhavioral complexities

remain intuitive notions.

C2) Analytical Complexities:

Analytical complexities bear é close relation to conceptual ones.
They have to do with analytical manipulations aimed at finding mathe-
matical solutions for the operating characteristics of a system. It
is obvious that analytical complexities are directly linked to

conceptual complexities, both structural and behavioral.
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Aan

In Queuing Theory we find that the analytical complexity (in

pren
e
[

the intuitive sense) jumps tremendously when passing from single T
queues to queuing networks. We also find that the equation systems

are analytically legs complex for exponential servers as compared to

Erlangian ones, for FIFO queue discipline as compared to preemptive

resume, and for Bernulli switches as compared to non-Markovian ones.

If there are algorithmical solutions, then analytical complexities

may be quantified as ordinary computational complexities, i.e. as

measures of time and space required for finding such solutions.

C3) Simulation Complexities:

Simulation complexities are the analogue of computational complexi-
ties when the algorithm is a simulation rﬁn of the system, (mainly a
stochastic one). Simulations of a stochastic system are used to derive
some information, when a complete analytical solution is not within our
reach. Simulation complexities are inherently programming oriented and
fully quantifiable. They measure computer resources in terms of CPU
time and memory storage required to simulate a systeﬁ under some
stopping rule. For stochastic systems, one simulates sample histories
(realizations) using random number generators. For such cases, the
resources required for a run become random functions of the sample
hisfories to be simulated. When these random functions are measurable,
one is typically interested in the respective expectations and variances,
as they project the average resources and the fluctuations about it,
to result from repeated simulation runs. Some examples of simulation
complexity measures of stochastic discrete event systems (specifically,

queuing networks) may be found in Sec. 5.4 of Ch. 5.
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In general, different complexity notions need not be consistent in

the sense that their behavior could involve opposing monotoneity trends.

For example, if an Erlangian queuing network admits of a reduction to
an exponential network, then this would decrease the behavioral and
analytical complexities. On the other hand, the structural complexity
would increase considerably, as we add more nodes and arcs. Similar
phenomena are pointed out in [Z5] in the domain of structured functions
(abstractions of networks).

The choice of a complexity notion is up to the user, and it varies
from situation to situation. Therefore, a simplification process as

guided by complexity criteria is really in the eye of the beholder.

B.4 Examples

In this section we further exemplify instances of simplifications

and demonstrate how our formalism works.

Example B.4.1

For deterministic systems such as mathematical systems, iterative
specifications (see Appendix A) and DEVSs or DEVNs (see Ch. 1), the
set of "systems'" is the correspoﬁding set of state-systems while
"aspects' are formalized as behavioral frames. The main vehicle for
simplifications over classes of such deterministic systems is the
morphism concept (see ibid.). A morphism (g,h,k) has inherent simpli-
fication properties of '"complexity'" reduction, and the "aspect preser-
vation" effect is manifested by the existence of a translation process

via h and k between the structure and behavior, respectively, of
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the base and lumped models. For a more detailed discussion of the
simplification effect of,morphisms, the reader is referred to Appendix
A. Observe that in a hierarchy of morphisms, the more specialized

the morphism, the smaller the simplification effect. As we specialize
h from a mere morphism to a homomorphism and an isomorphism, the struc-
tural modification of the morphic preimage to its morphic image is
reduced, the gradient of structural complexities declines, and we can
expect to preserve more behavioral frames.

O

Example B.4.2

Simplifications of stochastic systéms such as stochastic DEVSs
(see Ch. 2) follow the basic pattern of Example B.4.1, subject fo some
modifications.

The set of '"systems" is composed of probability spaces. These
are usually coordinate probability spaces that represent informal
descriptions of stochastic systems. The "aspects" set consists of
behavioral frames formalized as stochastic processes (see Ch. 2).
Stochastic simplifications are identified with the existence of a
stochastic morphism H defined as a variant of the measure preserving

transformation concept (see Ch. 3). The simplification effect of

" a stochastic morphism is analogous to its deterministic countefpart.

"Complexity'" reduction and ''preservation' are attained by lumping
sample points and coarsening the base model's g-algebra in a measure

preserving manner. The reader is referred to Ch. 3 for more details.



302

Example B.4.3

In this example, we exemplify how our proposed formalism works
in a queuing-theoretic context.

Our set of "systems" is the class of Jackson queuing networks
(described in Ch. 4) in their coordinate probability space represen-

tation (see Ch. 2).

The '"'aspects' set of a "system" is the set of all stochastic
processes over the associated probability space. Define a "complexity"

notion c* as the size of the networks, say the sum of nodes and arcs.

The "preservation" notion w* of any "aspect' pair (wl,wz)e TO x Wo is
. 1 2

defined as distribution equivalence of wl and wz (i.e. as the equality

F =F of their families of finite dimensional distributions).

Y1 ¥

Next we focus on "aspect' pairs (w;,wg) where w; is the total
service time sampled by an arbitrary customer, in the network oy
Let us formulate an informal simplification problem as follows:
informal SP: 'Characterize all A—simplifications over the class of
Jackson networks (a A-simplification of a queuing network removes
all arcs among the nodes, and therefore is a simplification relative
to c*), such that the total time service time sampled by an arbitrary
customer in the network is preserved in distribution."

The formal version of SP runs as follows:
formal SP{ "Characterize all A-simplifications (B,A) over the class of

Jackson networks such that S((B,K),C*,(w§,¢i),ﬂ*) = 'true'."

Notice that the 'preservation of total service time" alluded to

in the informal SP really refers to an "aspect" pair (total service
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time of arbitrary customer in B; total service time of arbitrary
customer in A). Actually the former is an informal shorthand for

the latter. This point is not altogether trivial. For example, if
in B the waiting time distribution of arbitrary customer is the same
as the transit time distribution of arbitrary customer in A such that
C(A)"sb" c(B), then our formalism would recognize BF2>A to be a valid

simplification in the "aspect" pair (waiting time, transit time).

There is no intuitive reason why "aspect' pairs, whose components do not

play the same intuitive role, should not be regarded as being

 "preserved'" under some otherwise intuitive simplification.

The domain of SP is D(SP) = U {(B,A)}X{C*}X{(¢§,¢;)}X{ﬂ*} where
(B,A\)erT

I' is the set of all A-simplifications over Jackson networks. o=
A solution of SP is based on Theorem 5.2.4 in Ch. 5.
Define SSP = <'assertion', 'proof’, 'algorithm') where
1. 'assertion' = "a A-simplification (8,A), whose lumped model
is obtained according to Theorem 5.2.4, satisfies
S((B,l),c*,(wg,wi),w*) = 'true' iff
every node n in the base model B satisfies the condition

q_ o = const."
nn

(The quantities a, and o, are structural parameters of a
Jackson network, i.e. part of its description.)

2. 'proof' is given in Theorem 5.2.4.

3. 'algorithm' amounts simply to checking the condition
q,0, = const. directly from the description of B, and verifying
whether it holds or not. This clearly is a finite decision

process that allows us to decide effectively the validity of

S for each simplification Bizj’l in T. ]
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Further examples of simplifications over the class of Jackson

networks may be found in Sections 5.1 - 5.3 of Chapter. 5.



APPENDIX C

SOME STOCHASTIC PROCESSES BACKGROUND

C.0 Introduction

This appendix reviews some basic facts pertaining to Markov
processes, birth-and-death equations and stochastic equilibrium.
Relevant material can be found in standard references such as [Cil]

(see Ch. 8), [D1] (see Ch. VI) and [F2] (see Ch. X).

C.1 Markov Processes

If X and {Ye: 6 €0} are random variables over a probability space
S = (Q,A,P) and E(|X]) < =, then E(XlYe, 6 €0) will denote the
eonditional expectation of X with respect to o({Ye: ee:e})f (see [D1],

Ch. I). If AeA, then P(A|Ye, 6e€0) will denote the conditional

probability of A with respect to'o({Ye: 6 €0}) (see ibid.). Conditional

probabilities are special cases of conditional expectations when
X = IA is the indicator function of A.

In the sequel, 0 will denote a subset of the real line.

Definition C.1.1

An n-dimensional stochastic process V = {Ye}eeo

space S = (Q,A,P) is called a Markov process if whenever s < t'< u,

over a probability

the equality

(A) P(Y e B]Ye, 6€(s,t]) = P(Y,€ BIYt)

.I.
the o-algebra generated by {Ye}eeo'
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holds almost surely for every Borel set B(&Bn, where B" is the Borel

o-algebra on the n-dimensional Euclidean space‘mp. 1

An equivalent statement of (A), called the Markov property (see
[D1] p. 81), asserts that if Y is a Markov process, then for every
random variable Z measurable on o({Ye: 8 > t}) with E(|Z]) < =,

(B) E(ZIYG: B <t) = E(Z[Yt) almost surely.

In particular, if Z = I, and Te 0({Y6: ® < t}), then almost surely

A
(cf. [C1] p. 136)
©) p(A]r,Ye,e £t) = P(A[Yt)

where T ébove should be understood as IF'

We now exhibit a sufficient condition that guarantees a stochastic

process to be a Markov process.

Theorem C.1.1

Let ¥ = {Ye}eee be an n-dimensional stochastic process over a

probability space S = (Q,A,P). Suppose that Y satisfies a stochastic

equation of the form

a) Y, = f(Ys’{Zt}s<tsu) for any s < u
where {Z 1} is a set of random variables over S, such
t s<t<u
that

b) c({Zt: s < t < u}) is independent of 0({Y6: 8 <s})

and f(Ys’{Zt}s<tsu) is measurable.

Then Y is a Markov process.
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Proof

See e.g. [S1], Ch. 3 pp. 73-75. a

We remark in passing that the term "Markov jump process" is some-
times used, thus reflecting the fact that under mild regularity condi-
tions, the sample functions may be chosen to be step functions almost

surely (see [D1] p. 246).

For a Markov process Y = {Ye}eee with a denumerable state space,

Definition C.1.1 may be restated in terms of "ordinary' probabilities
as follows:

(D) Pr(Y, = vn|Y6_= vi» 1 <1 <n-1) = Pr(y, = "nlYe = v
n i n n-1

for any indices 6, < 92 <ee.< B 4 <8 and states

Vis 1 <i < n, and provided Pr(Ye = Vs, 1 <i <n-1) > 0.
i .

The right hand side of (D) is called a (Markov) transition funetion

and denoted p v (en_l,en). To simplify matters we assume the
n-1"n

transition functions to be always defined.

We now restrict the discussion to Markov processes ¥ = {Ye}eee
with a denumerable state space R(Y), where 6 = [0,») and Y has
stationary transition probabilities (i.e. the transition functions
pvlvz(el’GZ) depend only on V)5V, and t = 62-61). In this case, the

latter reduce to 1 (t), and the transition matrixz consisting of
2 :
transition functions becomes P(t) & [pv v (t)]. 1In particular, P(t)
172

satisfies the Chapman-Kolmogorov equations.
(E) P(s + t) = P(s)P(t), Vs,teo .

If one assumes P(t)éj::6+1 (identity matrix), then ﬁ(O) exists as a

Lol

o=

-
o
e
&
o
Ll
o
e
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right derivative (in t), but may have infinite components (see [Cl]
p. 126). However, under certain regularity conditions (finiteness of
ﬁvv(O),\)ER(V)), P(t) is guaranteed to have continuous derivatives
everywhere (see [Cl] p. 130).

In this case, the Kolmogorov forward and baékward'equations can
be derived from (E) by differentiéting (E) with respect to s and t
respectively and setting each variable to 0 (see [D1] p. 240).

With dots denoting derivatives in t, we obtain respectively

(F.1) P(t) = P(t)G subject to P(0) = I

I

L}
n

(F.2) P(t) = GP(t) subject to P(0)
where G 2 P(0) is called the infinitesimal generator matrix
of ¥ (see [F2] p. 456).

Moreover, the boundedness of the £, £ c,s veR(Y), guarantees (see

[F1] p. 475) that both (F.1) and (F.2) have a minimal solution P(t)
which is honest (i.e. its rows are probability vectors). The quanti-

ties c, are extremely important, as they hold the key to existence and

uniqueness of an honest transition matrix for a Markov process. Each c,

is interpreted as.the rate of transition from state v, and by station-
arity of the transition probabilities, this rate does not depend on t.
If the c, are unbounded, the minimal solution (which>always exists) may
not be honest, and the defect is interpreted as probabilities due to
infinite number of jumps in finite intervals (see [F2] p. 329). In this
case, the solution for P(t) is not unique. However, with bounded;cv,
the Markov process Y is guaranteed to be comservative, i.e. to have
almost surely a finite number of jumps in each finite interval, and vice

versa. In this case, one can show by direct calculation that, say the



309

forward equation (F.1), is equivalent to the system of integral equations

(see [F2] p. 484)

t
-c,t ~-c_(t-x)
N = A Vv
(©) by (1) = &, e +ueZR:(V) (.)/'pxu(x)curuve dx

x,v e R(Y).

Here, §

AV is Kronecker's delta and each ruv,is the conditional probabil-

ity that a jump will take place from state u to state v, given that
a jump has taken place from state u.

Furthermore, differentiating (G) yields

~C ifA=wv

)\,

p)\\) (O) =

cArAu’ if A # v

It is known that the minimal solution may be obtained as a point-

wise limit of the sequence {P(n)(t)}:=0 defined recursively by

w1 pD ) =5, A

(o<

A Av
t
(n+1) A -c,t (n) -c_(t-x)
(H.2) Mo (t) <S>\ve + UGZR:(V) 6/.13>\u (x)curwe v dx

(see [F2] p. 485 for a derivation in the Laplace-Stieltjes
transform domain).
The treatment for the backward equations is analogous, except
that the backward equatiqns might have sélutions that do not satisfy

the forward equation (see [F1] p. 478).

loed
-4
[
o
i
£
LTl
e
o
Y
rr

[



310

C.2 Absolute Probabilities of Markov Processes

Although the development of Markov Processes is traditionally
carried out via their trénsition structure, in applications one is
mainly interested in the trajectories of the state absolute probabili-
ties.

Formally, we define

Definition C.2.1

Let V¥ = {Y_}

67 0co be a stochastic process with a denumerable state

space R(Y). The probability vector y(6) of Ye is a vector whose v-th
coordinate, v eR(Y),is given by

y,(0) 2 Pr(¥o= v).

The probability vector y(0) is called the <nitial condition of Y.

The function y(6) (in 6) is called the probability trajectory of Y

and yv(e) is called the probability trajectory of state v. ()

The relation between the trénsition structure given by P(t) and
the probability trajectory y(t) is such that the former determines
the latter up to an initial condition y(0). In other words |

(A) y(t) = y(0)P(t).

If P(t) is everywhere differentiable in t, then

(B) y(t) = y(O)P(t)

Thus, premultiplication by y(0) of the Kolmogorov forward equation

(F.1) in Sec. C.1 gives us
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© F(t) = y(©)6
which we call.the forward absolute probability equations.
The backward equations are similarly obtained by postmultiplying (F.2)
in Sec. C.1 by the transpose of y(0).
We now give conditions under which Y has almost surely finite
number of jumps in each finite interval. In this case, equations (C)
above and (F.1) in Sec. C.1 are equivalent in the sense qf existence

and uniqueness of respective solutions P(t) and y(t) for them.

Theorem C.2.1

Let ¥ = {Y(t)} be a Markov process with stationary transi-

t20

tion probabilities and almost surely finite number of jumps in every

finite interval. Let y(0) be an initial condition for Y, and G its
infinitesimal generator matrix. Consider the equation

(1) u(t) = u(t)G subject to u(0) = y(0)

-Then (1) has a unique probability solution u(t) which is precisely the

probability trajectory y(t) of Y. Moreover, y(t) is obtained as a

minimal solution of (1) and each coordinate yv(t) in y(t) satisfies the

integral equation

t

@ y® =y @ ¥+ ¥ [y xecr e
v v uGR(V)O H HoRY

-c_ (t=x)
v dx

v eR(Y).

Proof

See [BM1], Lemma 2.1.
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An important class of Markov processes with denumerable state
space is obtained, when state transitions are restricted to adjacent

states in the sense of

Definition C.2.2

Let VY = {Yt}t>0 be an m-dimensional Markov process with

RY) = {(nl,...,nm): n, is an integer}. Let e 1 <ix<mbe the
m-dimensional unit vector with 1 in the i-th coordinate. Then two
states v,ue€R(Y) are called adjacent if either of the following holds:

a) v =yu+ e for some 1 <i < m
b) v =y - ei for some 1 < i <m

c) v=u+e.—ej for some 1 <i,j £ m O

Thus, adjacent states are '"meighboring'" lattice points. We now

define formally the restrictions on state transitions by

Definition C.2.3

Let Y = {Yt}t>0 be as in definition C.2.2. We say that Y is an

m-dimensional birth-and-death process, if whenever p and v are not
adjacent states, we have ;
a) ﬁvu(t,t) = ﬁuv(t,t) =0, tz0 (derivative with repsect to
the second argument)

In this case, Equation (C) will be referred to as the birth-and-death

equation of VY.
a
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Observe that for m = 1, Definition C.2.3 properly reduces to the
ordinary definition of (l-dimensional) birth-and-death processes (see

e.g. [F1] p. 454).

C.3 Equilibrium Concepts

When dealing with stpchastic processes, one is often interested in
its equilibrium properties. Intuitively, an equilibrium situation may
be attained asymptotically - when the proceés has been evoiving for a
"long time", or immediately - if started with the appropriate initial

condition. Formally, we define

Definition C.3.1

Let ¥V = {Ye} be a stochastic process with a denumberable

geo
state space R(Y). Let y(®) be a probability'vector of Ye.
Then
a) We say that Y is in equilibrium (or in steady state) under
yo, if y(6) is time invariant in the sense of
y(0) = y> = y(8) =y, Veeo.
In this case, y° is called an equilibrium vector of Y.
b) 'If yo is an equilibrium vector of Y such that for any choice
of an initial condition y(0), we have

0 . .
y(t)z——4>y (pointwise convergence),
- 00

then y° is called a long run vector of Y. a

Although, in general, Y may have several equilibrium vectors, it

can have at most one long run vector. In this case, the long run vector
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becomes the unique equilibrium vector of VY.

Statistical equilibrium is a situation whereby the probabilistic
behavior of ¥ (in terms of probability trajectories) does not fluctuate
in time. If the process evolves asymptotically into equilibrium, then
in general, the equilibrium situation evolved into depends on the initial
condition. However, the existence of a long run vector guarantees Y
to evolve asymptotically into a unique equilibrium situation, regardless
of initial conditions.

We point out in passing that an equilibrium vector of a Markov
process is a long run vector, whenever the recurrent part of the
state space is irreducible (see [Cil] p. 264).

For Markov processes with denumerable state space, we have the

following necessary and sufficient condition for a probability vector

to be an equilibrium vector.

Theorem C.3.1

Let Y =‘{Yt}t20 be a Markov process whose forward absolute
probability equation is

(1) y(t) = y(t)G.
Then y° is an equilibrium vector of ¥ iff‘y0 is a probability vector

satisfying

(2) 0=y0G.

Proof
By Definition C.3.1, yo is an equilibrium vector of Y iff
y0 satisfies (1) such that yo(t) = yo for all t > 0.

But y°(t) = y° iff y°(t)G = ¥°(t) = 0, i.e. iff (2) holds. 0
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